首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
ABSTRACT: BACKGROUND: Huntington's Disease (HD) is a fatal hereditary neurodegenerative disease caused by the accumulation of mutant huntingtin protein (Htt) containing an expanded polyglutamine (polyQ) tract. Activation of the channel responsible for the inositol-induced Ca2+ release from ensoplasmic reticulum (ER), was found to contribute substantially to neurodegeneration in HD. Importantly, chemical and genetic inhibition of inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) has been shown to reduce mutant Htt aggregation. RESULTS: In this study, we propose a novel regulatory mechanism of IP3R1 activity by type III intermediate filament vimentin which sequesters the negative regulator of IP3R1, IRBIT, into perinuclear inclusions, and reduces its interaction with IP3R1 resulting in promotion of mutant Htt aggregation. Proteasome inhibitor MG132, which causes polyQ proteins accumulation and aggregation, enhanced the sequestration of IRBIT. Furthermore we found that IRBIT sequestration can be prevented by a rho kinase inhibitor, Y-27632. CONCLUSIONS: Our results suggest that vimentin represents a novel and additional target for the therapy of polyQ diseases.  相似文献   

5.
6.
7.
Endoplasmic reticulum (ER) stress leads to the accumulation of misfolded proteins in the ER lumen and initiates the unfolded protein response (UPR). Components of the UPR are important in pancreatic development, and recent studies have indicated that the UPR is activated in the arginine model of acute pancreatitis. However, the effects of secretagogues on UPR components in the pancreas are unknown. The present study aimed to examine the effects of different types and concentrations of secretagogues on acinar cell function and specific components of the UPR. Rat pancreatic acini were stimulated with the CCK analogs CCK8 (10 pM-10 nM) or JMV-180 (10 nM-10 microM) or with bombesin (1-100 nM). Components of the UPR, including chaperone BiP expression, PKR-like ER kinase (PERK) phosphorylation, X box-binding protein 1 (XBP1) splicing, and CCAAT/enhancer binding protein homologous protein (CHOP) expression, were measured, as were effects on amylase secretion and intracellular trypsin activation. CCK8 generated a biphasic secretion dose-response curve, and high concentrations increased intracellular active trypsin levels. In contrast, JMV-180 and bombesin secretion dose-response curves were monophasic, and high concentrations did not increase intracellular trypsin activity. All three secretagogues increased BiP levels and XBP1 splicing. However, only supraphysiological levels of CCK8 associated with inhibited amylase secretion and trypsin activation stimulated PERK phosphorylation and expression of CHOP. The effects of CCK8 on UPR components were rapid, occurring within 5-20 min. In conclusion, ER stress response mechanisms appear to be involved in both pancreatic physiology and pathophysiology, and future efforts should be directed at understanding the roles of these mechanisms in the pancreas.  相似文献   

8.
9.
The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1–208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.  相似文献   

10.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

11.
Endoplasmic reticulum (ER) stress is increasingly recognized as an important mechanism in a wide range of diseases including cystic fibrosis, alpha-1 antitrypsin deficiency, Parkinson's and Alzheimer's disease. Therefore, there is an increased need for reliable and quantitative markers for detection of ER stress in human tissues and cells. Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum can cause ER stress, which leads to the activation of the unfolded protein response (UPR). UPR signaling involves splicing of X-box binding protein-1 (XBP1) mRNA, which is frequently used as a marker for ER stress. In most studies, the splicing of the XBP1 mRNA is visualized by gel electrophoresis which is laborious and difficult to quantify. In the present study, we have developed and validated a quantitative real-time RT-PCR method to detect the spliced form of XBP1 mRNA.  相似文献   

12.
Huntington's disease (HD) is marked by the expansion of a tract of repeated CAG codons in the HD-gene, IT15. Once expressed, the expanded poly Q region of the huntingtin protein (Htt), which is normally soluble, becomes insoluble, leading to the formation of intracellular inclusions and ultimately to neuronal degeneration. Interruption of the pure poly Q tract at the genetic level should undermine the transition from Htt solubility to Htt insolubility. Modified single-stranded oligonucleotides were used to direct the nucleotide exchange of an A residue to a T residue in the second codon of the HD-gene, resulting in the creation of a leucine residue among the poly Q tract. Consistent with results from other groups, we provide evidence that short synthetic DNA molecules can modify the HD-gene directly, preliminarily offering a potential therapeutic approach to Huntington's disease.  相似文献   

13.
14.
Cells activate the unfolded protein response (UPR) to cope with endoplasmic reticulum (ER) stress. In the present study, we investigated the possible involvement of psychological stress on UPR induction in the mouse brain. When mice were exposed to immobilization stress for 8?h, XBP1 mRNA splicing was significantly induced in the hippocampus, cortex, hypothalamus, cerebellum, and brain stem. On the other hand, we did not observe any increase in XBP1 splicing in the liver, suggesting that this effect is specific to the brain. Stress-induced XBP1 splicing was attenuated 2 days after immobilization stress. We did not observe increases in any other UPR genes, such as CHOP or GRP78, in mouse brains after immobilization stress. These findings indicate an important specific role of XBP1 in response to psychological stress in the mouse brain.  相似文献   

15.
In acute pancreatitis, endoplasmic reticulum (ER) stress prompts an accumulation of malfolded proteins inside the ER, initiating the unfolded protein response (UPR). Because the ER chaperone tauroursodeoxycholic acid (TUDCA) is known to inhibit the UPR in vitro, this study examined the in vivo effects of TUDCA in an acute experimental pancreatitis model. Acute pancreatitis was induced in Wistar rats using caerulein, with or without prior TUDCA treatment. UPR components were analyzed, including chaperone binding protein (BiP), phosphorylated protein kinase-like ER kinase (pPERK), X-box binding protein (XBP)-1, phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CCAAT/enhancer binding protein homologues protein, and caspase 12 and 3 activation. In addition, pancreatitis biomarkers were measured, such as serum amylase, trypsin activation, edema formation, histology, and the inflammatory reaction in pancreatic and lung tissue. TUDCA treatment reduced intracellular trypsin activation, edema formation, and cell damage, while leaving amylase levels unaltered. The activation of myeloperoxidase was clearly reduced in pancreas and lung. Furthermore, TUDCA prevented caerulein-induced BiP upregulation, reduced XBP-1 splicing, and caspase 12 and 3 activation. It accelerated the downregulation of pJNK. In controls without pancreatitis, TUDCA showed cytoprotective effects including pPERK signaling and activation of downstream targets. We concluded that ER stress responses activated in acute pancreatitis are grossly attenuated by TUDCA. The chaperone reduced the UPR and inhibited ER stress-associated proapoptotic pathways. TUDCA has a cytoprotective potential in the exocrine pancreas. These data hint at new perspectives for an employment of chemical chaperones, such as TUDCA, in prevention of acute pancreatitis.  相似文献   

16.
17.
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.  相似文献   

18.
Protein conformational maladies such as Huntington Disease are characterized by accumulation of intracellular and extracellular protein inclusions containing amyloid-like proteins. There is an inverse correlation between proteotoxicity and aggregation, so facilitated protein aggregation appears cytoprotective. To define mechanisms for protective protein aggregation, a screen for suppressors of nuclear huntingtin (Htt103Q) toxicity was conducted. Nuclear Htt103Q is highly toxic and less aggregation prone than its cytosolic form, so we identified suppressors of cytotoxicity caused by Htt103Q tagged with a nuclear localization signal (NLS). High copy suppressors of Htt103Q-NLS toxicity include the polyQ-domain containing proteins Nab3, Pop2, and Cbk1, and each suppresses Htt toxicity via a different mechanism. Htt103Q-NLS appears to inactivate the essential functions of Nab3 in RNA processing in the nucleus. Function of Pop2 and Cbk1 is not impaired by nuclear Htt103Q, as their respective polyQ-rich domains are sufficient to suppress Htt103Q toxicity. Pop2 is a subunit of an RNA processing complex and is localized throughout the cytoplasm. Expression of just the Pop2 polyQ domain and an adjacent proline-rich stretch is sufficient to suppress Htt103Q toxicity. The proline-rich domain in Pop2 resembles an aggresome targeting signal, so Pop2 may act in trans to positively impact spatial quality control of Htt103Q. Cbk1 accumulates in discrete perinuclear foci and overexpression of the Cbk1 polyQ domain concentrates diffuse Htt103Q into these foci, which correlates with suppression of Htt toxicity. Protective action of Pop2 and Cbk1 in spatial quality control is dependent upon the Hsp70 co-chaperone Sti1, which packages amyloid-like proteins into benign foci. Protein:protein interactions between Htt103Q and its intracellular neighbors lead to toxic and protective outcomes. A subset of polyQ-rich proteins buffer amyloid toxicity by funneling toxic aggregation intermediates to the Hsp70/Sti1 system for spatial organization into benign species.  相似文献   

19.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号