首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used several trivalent lanthanides as probes for the high-affinity Ca(II)-binding site of the Ca(II) + Mg(II)-ATPase of skeletal muscle sarcoplasmic reticulum. The luminescent probes Eu(III) and Tb(III) were excited directly with pulsed laser light and the energy transfer efficiencies to several lanthanide acceptors were measured, under conditions in which most donor-acceptor pair occupied high-affinity Ca(II) sites. We obtain an inter-ionic site distance of about 0.8-0.9 nm. Energy transfer measurements were also done with Eu(III) in at least one Ca(II) site and bidentate Cr-ATP complex at the ATP hydrolytic site. Quenching of Eu(III) luminescence by Cr-ATP was total under these conditions. We calculate an upper limit of 1.0 nm for the distance from the Ca(II) site(s) to the complexed Cr(III) ion at the hydrolytic site.  相似文献   

2.
Circularly polarized emission (CPE) and total emission (TE) spectra are reported for Eu3+ and Tb3+ complexes of L-aspartic acid (L-asp), L-serine (L-ser), L-threonine (L-thr) and L-histidine (L-his) in D2O solution under various pH conditions. Variations in TE and CPE intensities and in CPE splittings and sign patterns as functions of solution pH are correlated with lanthanide ion/ligand binding characteristics and with structural changes in the coordination environment of the metal ion. In the Eu3+/amino acid systems, the emission bands associated with the 5D0 leads to 7F1 and 7F2 Eu3+ transitions are monitored, and in the Tb3+/amino acid systems the 5D4 leads to 7F5 Tb3+ emission is examined.  相似文献   

3.
Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde–aniline (SAN) and salicylaldehyde–cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand‐functionalized PSFs, PSF–SAN and PSF–SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer–rare earth complexes, PSF–SAN–Eu(III) and PSF–SCA–Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo‐gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF–SAN–Eu(III) series complexes, namely the binary complex PSF–(SAN)3–Eu(III) and the ternary complex PSF–(SAN)3–Eu(III)–(Phen)1 (Phen is the small‐molecule ligand 1,10‐phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF–SAN–Eu(III) series complexes, namely the binary complex PSF–(SCA)3–Tb(III) and the ternary complex PSF–(SCA)3–Tb(III)–(Phen)1, display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III).  相似文献   

4.
Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely suited for multiplexed imaging applications because they can serve as Förster resonance energy transfer (FRET) donors to two or more differently colored acceptors. However, lanthanide complexes have low photon emission rates that can limit the image signal/noise ratio, which has a square-root dependence on photon counts. This work describes the performance of a wide-field, time-gated microscope with respect to its ability to image Tb(III) luminescence and Tb(III)-mediated FRET in cultured mammalian cells. The system employed a UV-emitting LED for low-power, pulsed excitation and an intensified CCD camera for gated detection. Exposure times of ∼1 s were needed to collect 5–25 photons per pixel from cells that contained micromolar concentrations of a Tb(III) complex. The observed photon counts matched those predicted by a theoretical model that incorporated the photophysical properties of the Tb(III) probe and the instrument’s light-collection characteristics. Despite low photon counts, images of Tb(III)/green fluorescent protein FRET with a signal/noise ratio ≥ 7 were acquired, and a 90% change in the ratiometric FRET signal was measured. This study shows that the sensitivity and precision of lanthanide-based cellular microscopy can approach that of conventional FRET microscopy with fluorescent proteins. The results should encourage further development of lanthanide biosensors that can measure analyte concentration, enzyme activation, and protein-protein interactions in live cells.  相似文献   

5.
A series of luminescent lanthanide complexes with a new tripodal ligand featuring salicylamide arms, 2,2′,2″‐nitrilotris(2‐furfurylaminoformylphenoxy)triethylamine (L), were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. Photophysical properties of the complexes were studied by means of UV–vis absorption and steady‐state luminescence spectroscopy. Excited‐state luminescence lifetimes and quantum yield of the complexes were determined. Luminescence studies demonstrated that the tripodal ligand featuring salicylamide arms exhibits a good antennae effect with respect to the Tb(III) and Dy(III) ion due to efficient intersystem crossing and ligand to metal energy transfer. From a more general perspective, this work offers interesting perspectives for the development of efficient luminescent stains and enlarges the arsenal for developing novel luminescent lanthanide complexes of salicylamide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We present the facile technique of colorimetric SNP (single nucleotide polymorphism) analysis through DNA-templated cooperative complexation between a luminescent lanthanide ion (Ln(III): Tb(III) or Eu(III)) and two ODN (oligodeoxyribonucleotide) conjugates carrying a metal chelator. Families of complexane-type chelators and heterocyclic aromatic ligands were covalently attached to ODNs to form conjugates for application as capture and sensitizer probes. The sequences of the conjugates were designed so as to form a ternary tandem duplex with the target, where their auxiliary units face each other, providing a microenvironment to accommodate Ln(III). Only the combination of EDTA (ethylenediaminetetraacetic acid) conjugates and phen (1,10-phenanthroline) conjugates provided significant emissions with quantum yields of 3.3% and 1.5% for Tb(III) and Eu(III), respectively, in the presence of the target. Biallelic polymorphism in the TPMT (thiopurine S-methyltransferase) gene, wt/wt (G/G), mut/mut (C/C), and wt/mut (G/C), were distinguished as emissions in green, red, and yellow, respectively; the colors were identified even by the naked eye.  相似文献   

7.
Oncomodulin, the parvalbumin-like calcium-binding protein frequently expressed in tumor tissue, was isolated from Morris hepatoma 5123tc and studied using the luminescent lanthanide ions, Eu3+ and Tb3+. Titrations of the apoprotein - whether monitored by indirect excitation of bound Tb3+, by direct laser excitation of bound Eu3+, or by quenching of the intrinsic tyrosine fluorescence - all indicated the presence of two high-affinity binding sites for lanthanide ions, as in parvalbumin. Moreover, the appearance of the Eu3+ 7F0----5D0 excitation spectrum of Eu2-oncomodulin was found to be highly pH-dependent, as previously observed with parvalbumin. At pH 5.0, it consists of a single peak centered at 5796 A, having a linewidth of approximately 6 A. At higher pH values, this spectrum is replaced by a broader, more symmetric peak at 5782 A. Oncomodulin, however, was found to differ from parvalbumin in at least one important respect: In contrast to the muscle-associated protein, the affinities of the CD site in oncomodulation for Tb3+ and Ca2+ were found to be rather similar, with KCa/KTb approximately equal to 11 +/- 2.  相似文献   

8.
This work reports Eu(III) and Tb(III) luminescence titrations in which the lanthanide ions were used as spectroscopic probes for Ca(II) ions to determine the metal binding ability of Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2). These decapeptides correspond to the putative calcium binding region of the plant antifungal proteins SI-alpha1 from Sorghum bicolor and of Zeathionin from Zea mays, respectively. The luminescence spectra for the Eu(III)-decapeptide system (red emission) with the excitation at the Trp band at 280 nm showed an enhancement of the intensities of the 5D(0)-->7F(J) transitions (where J=0-4) with increments of Eu(III) ion concentration. The photoluminescence titration data of the terbium ion (green emission) in the decapeptide solutions showed intensification of the 5D(4)-->7F(J) transitions (J=0-6), similar to that observed for the Eu(III) ion. Thus, energy transfer from Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) to the trivalent lanthanide ions revealed that these peptides are capable of binding to these metal ions with association constants of the order of 10(5) M(-1). The amino acid derivative Ac-Trp-OEt also transferred energy to Tb(III) and Eu(III) ions as judged from the quenching of tryptophan luminescence. However, the energy transfers were significantly lower. Taken together the luminescence titration data indicated that Ac-NESVKEEGGW-NH(2) and Ac-NESVKEDGGW-NH(2) bind efficiently to both trivalent lanthanide ions and that these ions may be used as probes to distinguish an anionic peptide from a neutral amino acid derivative.  相似文献   

9.
To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N‐thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV ? visible absorption and steady‐state luminescence spectroscopy. The results of UV ? vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited‐state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand ? Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Su Y  Yang L  Wang Z  Jin X  Weng S  Yan C  Yu Z  Wu J 《Carbohydrate research》2006,341(1):75-83
Crystal structures and FT-IR spectra of metal ion-galactitol (C6H14O6, the ligand here abbreviated as L) complexes: 2LaCl3*C6H14O6*10H2O and SrCl2*C6H14O6 complexes are reported. Crystal data of lanthanide chlorides (La3+, Nd3+, Sm3+, Eu3+, Tb3+)-galactitol complexes and alkaline earth chlorides (Ca2+, Sr2+)-galactitol complexes published earlier are summarized. Unlike other lanthanide ion-galactitol complexes (2MCl3*C6H14O6*14H2O), lanthanum ions give rise to two different structures: LaCl3*C6H14O6*6H2O (LaL1) and 2LaCl3*C6H14O6*10H2O (LaL2). Sr2+-galactitol complexes also crystallized with two structures: SrCl2*C6H14O6*4H2O (SrL1) and SrCl2*C6H14O6 (SrL2). These metal ions thus give different coordination structures with galactitol. The crystal structures and FT-IR spectra of lanthanide ion and alkaline earth ion-galactitol complexes were integrated to interpret the coordination modes of different metal ions. Similar IR spectra demonstrate the same coordination modes of the complexes.  相似文献   

11.
A synthesis strategy for the on-resin assembly of luminescent lanthanide chelates from commercially available compounds was developed. Advantages of the approach include the absence of spacers between the metal ion and the attachment site, and the compatibility with typical chemical protein synthesis protection schemes. Methoxycoumarin-labeled lysine and tris(tert-butyl)-DOTA were consecutively coupled with high efficiency to a free amino group in otherwise fully protected peptide segments using standard peptide synthesis methods. Addition of stoichiometric amounts of Tb(3+) to the modified, cleaved, and purified peptides yielded the desired lanthanide chelate. Incorporation of this label into a chemically synthesized, full-length mechanosensitive channel of large conductance (MscL) of E. coli and subsequent reconstitution into vesicles resulted in a functional mechanosensitive channel of comparable conductance to the wild-type channel. However, this channel required increased suction to gate. Excitation of the antenna molecule methoxycoumarin at 336 nm resulted in an emission spectrum typical for Tb(3+) and a luminescence lifetime of 0.67 ms. The location of the probe close to the backbone of this protein may provide precise information about conformational changes during channel opening from LRET studies.  相似文献   

12.
Laser-induced Eu(3+) luminescence spectroscopy is used to probe the interaction of Eu(3+) ion with guanine-containing nucleotides and single-stranded oligomers. By using time-resolved and non-time-resolved Eu(3+) luminescence techniques, two classes of Eu(3+) binding site are observed in oligo(dG)10, oligo(dG)8, oligo(dG)6, oligo(dG)4, and d-GMP. One class of site binds Eu(3+) ions more strongly than the other. Since the "tight" class of bound Eu(3+) ions have two coordinated water molecules, it is inferred that six or seven atoms from the oligomers are coordinating the Eu(3+). The "weaker" class of Eu(3+) ion sites involve the coordination of six or seven water molecules and therefore, are coordinated by one or two atoms from the oligomer. The tight class of Eu(3+) binding site is attributed to an interstrand association of Eu(3+) with the oligomers forming dimeric or polymeric structures. The dissociation constants (Kd) for the 1:1 complexes Eu(d-GMP)+ and Eu(d-GTP)- have been determined as well as the Kd for the dimerization reaction of Eu(d-GMP)+. The Tb(3+) luminescence enhancement properties of these molecules are also examined in relation to their EU(3+) binding characteristics.  相似文献   

13.
Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb(3+) with 130 nM affinity. Ions such as Dy(3+) , Yb(3+) , and Ce(3+) produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd(3+) complex) and luminescence microscopy (Z-L2LBT: Tb(3+) complex).  相似文献   

14.
Luminescent lanthanide complexes consisting of a lanthanide-binding chelate and organic-based antenna molecule have unusual emission properties, including millisecond excited state lifetimes and sharply spiked spectra, compared to standard organic fluorophores. We have previously used carbostyril (cs124, 7-amino-4-methyl-2(1H)-quinolinone) as an antenna molecule (Li and Selvin, J. Am. Chem. Soc., 1995) attached to a polyaminocarboxylate chelate such as DTPA. Here, we report the chelate syntheses of DTPA conjugated with cs124 derivatives substituted on the 1-, 3-, 4-, 5-, 6-, and 8-position. Among them, the DTPA chelate of cs124-6-SO(3)H has similar lifetime and brightness for both Tb(3+) and Eu(3+) compared to the corresponding DTPA-cs124 complexes, yet it is significantly more soluble in water. The Tb(3+) complex of DTPA-cs124-8-CH(3) has significantly longer lifetime compared to DTPA-cs124 (1.74 vs 1.5 ms), indicating higher lanthanide quantum yield resulting from the elimination of back emission energy transfer from Tb(3+) to the antenna molecule. Thiol-reactive forms of chelates were made for coupling to proteins. These lanthanide complexes are anticipated to be useful in a variety of fluorescence-based bioassays.  相似文献   

15.
Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.  相似文献   

16.
We attempted to establish whether lanthanide ions, when added to sarcoplasmic reticulum (SR) membranes in the absence of nucleotide, compete with Ca2+ for binding to the transport sites of the Ca(2+)-ATPase in these membranes, or whether they bind to different sites. Equilibrium measurements of the effect of lanthanide ions on the intrinsic fluorescence of SR ATPase and on 45Ca2+ binding to it were performed either at neutral pH (pH 6.8), i.e. when endogenous or contaminating Ca2+ was sufficient to nearly saturate the ATPase transport sites, or at acid pH (pH 5.5), which greatly reduced the affinity of calcium for its sites on the ATPase. These measurements did reveal apparent competition between Ca2+ and the lanthanide ions La3+, Gd3+, Pr3+, and Tb3+, which all behaved similarly, but this competition displayed unexpected features: lanthanide ions displaced Ca2+ with a moderate affinity and in a noncooperative way, and the pH dependence of this displacement was smaller than that of the Ca2+ binding to its own sites. Simultaneously, we directly measured the amount of Tb3+ bound to the ATPase relative to the amount of Ca2+ and found that Tb3+ ions only reduced significantly the amount of Ca2+ bound after a considerable number of Tb3+ ions had bound. Furthermore, when we tested the effect of Ca2+ on the amount of Tb3+ bound to the SR membranes, we found that the Tb3+ ions which bound at low Tb3+ concentrations were not displaced when Ca2+ was added at concentrations which saturated the Ca2+ transport sites. We conclude that the sites on SR ATPase to which lanthanide ions bind with the highest affinity are not the high affinity Ca2+ binding and transport sites. At higher concentrations, lanthanide ions did not appear to be able to replace Ca2+ ions and preserve the native structure of their binding pocket, as evaluated in rapid filtration measurements from the effect of moderate concentrations of lanthanide ions on the kinetics of Ca2+ dissociation. Thus, the presence of lanthanide ions slowed down the dissociation from its binding site of the first, superficially bound 45Ca2+ ion, instead of specifically preventing the dissociation of the deeply bound 45Ca2+ ion. These results highlight the need for caution when interpreting, in terms of calcium sites, experimental data collected using lanthanide ions as spectroscopic probes on SR membrane ATPase.  相似文献   

17.
Generally, metal-centered ff states dominate the discussion of the excited state properties of lanthanide complexes. In particular, the luminescence properties of Eu(III) and Tb(III) compounds have been studied in great detail for many decades. However, other types of excited states such as MC fd, MLCT, LMCT, MMCT and IL are also of interest. In this context, we have recently examined the excited state behavior of selected Ce(III), Ce(IV), Eu(II) and Gd(III) complexes which are luminescent and/or photoreactive.  相似文献   

18.
J Bruno  W D Horrocks  R J Zauhar 《Biochemistry》1992,31(31):7016-7026
The effects of minor differences in the amino acid sequences between a vertebrate (bovine testes) and an invertebrate (octopus) calmodulin on metal ion binding were investigated via laser-induced Eu3+ and Tb3+ luminescence. Amino acid substitutions at residues which are coordinated to the metal ion do not produce any detectable changes in the 7F0----5D0 excitation spectrum of the Eu3+ ion bound to octopus calmodulin relative to bovine testes calmodulin; only minor differences in the excited-state lifetime values in D2O solution are observed. The dissociation constants for Eu3+ (1.0 +/- 0.2 microM) and Tb3+ (5 +/- 1 microM) from the weak lanthanide binding sites (III and IV, numbered from the amino terminus) of octopus calmodulin were measured using luminescence techniques. Both values agree well with those reported previously for bovine testes calmodulin [Mulqueen, P. M., Tingey, J. M., & Horrocks, W. D., Jr. (1985) Biochemistry 24, 6639-6645]. The measured dissociation constant of Eu3+ bound in the tight lanthanide binding sites (I and II) is 6 +/- 2 nM for octopus calmodulin and 12 +/- 2 nM for bovine testes calmodulin. The distances between sites I and II (12.4 +/- 0.5 A) and sites III and IV (11.7 +/- 0.8 A) were determined from F?rster-type energy transfer in D2O solutions of octopus calmodulin containing bound Eu3+ donor and Nd3+ acceptor ions. F?rster theory parameters for nonradiative energy transfer between Tyr138 and Tb3+ ions bound at sites III and IV of octopus calmodulin were comprehensively evaluated, including a dynamics simulation of the orientation factor kappa 2. This theory is found to account quantitatively for the observed energy-transfer efficiency as evaluated from the observed sensitized Tb3+ emission.  相似文献   

19.
Solid complexes of lanthanide nitrates with an novel unsymmetrical tripodal ligand, butyl‐N,N‐bis[(2′‐benzylaminofomyl)phenoxyl)ethyl]‐amine ( L ) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We have developed a visual microwell plate assay for rapid, high-throughput screening for membrane-disrupting molecules such as de novo designed pore formers, antibiotic peptides, bacterial toxins, and lipases. The detectability is based on the strong fluorescence emission of the lanthanide metal terbium(III) (Tb(3+)) when it interacts with the aromatic chelator dipicolinic acid (DPA). While Tb(3+) is not strongly fluorescent alone, the binary complex emits bright green fluorescence when irradiated with uv light. For the microwell plate assay, we prepared unilamellar phospholipid vesicles that had either Tb(3+) or DPA entrapped and the opposite molecule in the external solution. Disruption of the membranes allows the Tb(3+)/DPA complex to form, giving rise to a visibly fluorescent solution. In plates with 20-microl wells, the lower limit of visual detectability of the Tb(3+)/DPA complex in solution was about 2.5 microM. The lower limit of detectability using vesicles with entrapped Tb(3+) or DPA was about 50 microM phospholipid. We show that the membrane-disrupting effect of as little as 0.25 microM or 5 pmol of the pore-forming, antibiotic peptide alamethicin can be detected visually with this system. This sensitive, high-throughput assay is readily automatable and makes possible the visual screening of combinatorial peptide libraries for members that permeabilize lipid bilayer membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号