首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Muscle larvae of Trichinella isolates from two outbreaks in Korea were analyzed by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiple-PCR. All of the muscle larvae showed a band similar to that of T. spiralis larvae of the reference strain. The two Korean Trichinella isolates (isolate code ISS623 and ISS1078) might be classifiable to Trichinella spiralis.  相似文献   

2.
The present study was designed to investigate the tolerance to low temperatures of 9 Trichinella isolates in rat muscle tissue. Nine groups of 24 rats were infected with encapsulated Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella murrelli, Trichinella T6, Trichinella nelsoni, and 3 nonencapsulated Trichinella pseudospiralis strains. Six rats from each of the groups were necropsied at 5, 10, 20, and 40 wk postinfection (wpi). Muscle tissues containing Trichinella larvae were exposed to temperatures of -18, -5, and 5 C for 1 or 4 wk, and afterward the reproductive capacity index (RCI) in mice was determined for the 9 individual Trichinella isolates. Only T. nativa muscle larvae were infective after freezing at a temperature of -18 C. At 5 wpi all encapsulated isolates, except for the tropical species T. nelsoni, remained infective after exposure to a temperature of -5 C for both 1 and 4 wk, whereas nonencapsulated T. pseudospiralis survived only 1 wk of exposure. All Trichinella spp. remained infective after exposure to a temperature of 5 C. Muscle larvae for all investigated species remained infective as long as they persisted in live rats during the experiment. Analysis of variance showed a significant effect of age on the temperature tolerance of encapsulated T. spiralis and nonencapsulated T. pseudospiralis. In addition, significant interaction between age of muscle larvae and length of exposure was found. In general Trichinella muscle larvae of medium age (10 and 20 wpi) tolerated freezing better than early and late stages of infection (5 and 40 wpi). This is the first study to demonstrate such a relationship between age of infection and temperature tolerance of Trichinella spp. muscle larvae.  相似文献   

3.
Ribo HRM, a single-tube PCR and high resolution melting (HRM) assay for detection of polymorphisms in the large subunit ribosomal DNA expansion segment V, was developed on a Trichinella model. Four Trichinella species: T. spiralis (isolates ISS3 and ISS160), T. nativa (isolates ISS10 and ISS70), T. britovi (isolates ISS2 and ISS392) and T. pseudospiralis (isolates ISS13 and ISS1348) were genotyped. Cloned allelic variants of the expansion segment V were used as standards to prepare reference HRM curves characteristic for single sequences and mixtures of several cloned sequences imitating allelic composition detected in Trichinella isolates. Using the primer pair Tsr1 and Trich1bi, it was possible to amplify a fragment of the ESV and detect PCR products obtained from the genomic DNA of pools of larvae belonging to the four investigated species: T. pseudospiralis, T. spiralis, T. britovi and T. nativa, in a single tube Real-Time PCR reaction. Differences in the shape of the HRM curves of Trichinella isolates suggested the presence of differences between examined isolates of T. nativa, T. britovi and T. pseudospiralis species. No differences were observed between T. spiralis isolates. The presence of polymorphisms within the amplified ESV sequence fragment of T. nativa T. britovi and T. pseudospiralis was confirmed by sequencing of the cloned PCR products. Novel sequences were discovered and deposited in GenBank (GenBank IDs: JN971020-JN971027, JN120902.1, JN120903.1, JN120904.1, JN120906.1, JN120905.1). Screening the ESV region of Trichinella for polymorphism is possible using the genotyping assay Ribo HRM at the current state of its development. The Ribo HRM assay could be useful in phylogenetic studies of the Trichinella genus.  相似文献   

4.
PCR-RFLP patterns of four isolates of Trichinella for rDNA ITS1 region   总被引:4,自引:0,他引:4  
We have studied the genetic differences among four isolates of Trichinella including a new strain of Trichinella spiralis (ISS 623) recently found from a human case who took a badger in Korea. Because they have a different host origin and came from geographically separated regions, we supposed the genetic pattern of the isolates might be different as had been previously reported. It was analysed by PCR-RFLP analysis of the rDNA repeat that can readily distinguish a species or strain from others. Isolated genomic DNA of each isolate of Trichinella larvae was amplified with ITS1 specific primers and digested with restriction endonucleases. The PCR product of ITS1 was confirmed using Southern blot analysis to be a 910 bp fragment. The restriction fragments of each isolate had variable patterns when it was digested with Rsa 1 only. According to the RFLP patterns, the estimated genetic divergence between each isolate was different. In conclusion, four isolates of Trichinella including a new strain of T. spiralis obtained from a Korean patient may have genetic differences in the ITS1 region and the Shanghai isolate was genetically more similar to the Japanese unknown isolate than others in the ITS1 region.  相似文献   

5.
Forty isolates of Trichinella collected from 5 continents were compared for 7 biological characters: newborn larvae produced per female worm cultured in vitro at the seventh, eighth, and ninth day postinfection, host muscle nurse cell development time, reproductive capacity index in rats and chickens, and resistance of muscle larvae to freezing. The isolates also were compared by analyses of an environmental character of the location from which they were isolated: the isotherms for January and July. By factorial analysis of correspondence of the biological and environmental data, the 40 isolates were grouped into 8 gene pools (T1-T8). The environmental temperature-related distribution was more evident for the sylvatic isolates (T2, T3, T5, T6, T7, T8), than for T1, which was isolated from domestic pigs, and for T4, a bird-adapted, nonencapsulating genetic type. The 8 biological groups correlated closely with the 8 gene pools previously identified on the basis of allozyme analysis. These results support the concept that the genus Trichinella is composed of at least 5 distinct gene pools or sibling species: Trichinella spiralis sensu stricto (T1), Trichinella nativa (T2), Trichinella sp. (T3), Trichinella pseudospiralis (T4), and Trichinella nelsoni (T7), and 3 other groups of uncertain taxonomic status (i.e., T5, T6, and T8).  相似文献   

6.
Twenty-six Trichinella isolates have been examined by the isoenzyme typing of ten enzyme systems (LDH, ME, 6PGDH, G6PDH, GOT, AK, PGM, ACON, MPI, GPI). Four different zymodemes were obtained. All the examined isolates have shown an electrophoretic behaviour like one or other of four reference strains. The isolates from Italy and Yugoslavia have an electrophoretic mobility like T. nelsoni reference strain. The isolates from France, Holland, Great Britain, Poland and USA have an electrophoretic mobility like T. spiralis reference strain. For T. nativa and T. pseudospiralis we have tested only the reference strains. These results support the validity of the taxonomy of Trichinella genus in four good species.  相似文献   

7.
The first human case with trichinellosis was reported in 1964 in Tibet, China. However, up to the present, the etiological agent of trichinellosis has been unclear. The aim of this study was to identify a Tibet Trichinella isolate at a species level by PCR-based methods. Multiplex PCR revealed amplicon of the expected size (173 bp) for Trichinella spiralis in assays containing larval DNA from Tibet Trichinella isolate from a naturally infected pig. The Tibet Trichinella isolate was also identified by PCR amplification of the 5S ribosomal DNA intergenic spacer region (5S ISR) and mitochondrial large-subunit ribosomal RNA (mt-lsrDNA) gene sequences. The results showed that 2 DNA fragments (749 bp and 445 bp) of the Tibet Trichinella isolate were identical to that of the reference isolates of T. spiralis. The Tibet Trichinella isolate might be classifiable to T. spiralis. This is the first report on T. spiralis in southwestern China.  相似文献   

8.
Kuratli, S., Lindh, J. G., Gottstein, B., Smith, D. F., and Connolly, B. 1999. Trichinella spp.: Differential expression of two genes in the muscle larva of encapsulating and nonencapsulating species. Experimental Parasitology 93, 153-159. The expression of the two genes tsmyd-1 and tsJ5 was studied in the muscle stage larva of three different species of Trichinella. T. spiralis and T. britovi are both encapsulating species, while T. pseudospiralis is a nonencapsulating species. Expression of tsJ5 is developmentally regulated in T. spiralis and has been shown in this study to be down-regulated in the T. pseudospiralis muscle larva compared with the other two species. Immunoblot analysis has also revealed that the relative abundance of the protein product of this gene, TSJ5, is lower in T. pseudospiralis muscle larvae. It has previously been shown that expression of tsmyd-1 is not developmentally regulated in T. spiralis (Connolly et al. 1996). In contrast, expression of this gene is slightly increased in the muscle larvae of T. pseudospiralis. Southern analysis of genomic DNA from the three Trichinella species shows that both genes are highly conserved.  相似文献   

9.
A bulk analysis of inter-simple sequence repeat-polymerase chain reaction (ISSR-PCR) provides a quick, reliable, and highly informative system for DNA banding patterns that permit species identification. The present study evaluates the applicability of this system to Trichinella species identification. After a single amplification carried out on a single larva with the primer 816([CA]nRY) under high stringency conditions, which provide high reproducibility, we were able to identify by consistent banding patterns 5 sibling species: Trichinella spiralis (ISS48), 2 Trichinella britovi isolates (ISS11 and ISS86), Trichinella murrelli (ISS35), Trichinella nativa (ISS71), Trichinella nelsoni (ISS29); 3 additional Trichinella genotypes: T8 (ISS149), T9 (ISS408 and ISS409), and T6 (ISS34); and the nonencapsulated species Trichinella pseudospiralis (ISS13). Moreover, 33 new Trichinella isolates from 2 zoogeographical regions were unequivocally identified. All Trichinella isolates have shown an identical pattern with those produced by the reference strain. According to these data, we have demonstrated that ISSR-PCR is a robust technique that emerges as a useful new application for the molecular identification of Trichinella isolates in epidemiological studies.  相似文献   

10.
The immune response of inbred mice was studied following infection with Trichinella spiralis var. pseudospiralis (TP) or with isolates of T. spiralis derived from a pig or from an arctic fox. Animals given a primary infection with 1 isolate of Trichinella and challenged 21 days later with the same or different isolates responded more quickly by expelling worms from the homologous challenge. In addition, although mesenteric lymph node cells from mice infected with each isolate of Trichinella would proliferate in vitro when cultured with antigen derived from each of the others, the strongest proliferation response always occurred when cells were cultured in the presence of antigen prepared from the specific isolate used to infect the mouse from which the cells were derived. In addition, it was possible to prepare monoclonal antibodies that recognized an antigen expressed by TP which was not shared by T. spiralis isolates and vice versa. Collectively, these data support the conclusion that the differences observed in the kinetics of immune responsiveness to different Trichinella isolates are referable, at least in part, to differences among the isolates in the expression of functionally relevant antigens.  相似文献   

11.
We developed a polymerase chain reaction based approach using restriction fragment length polymorphisms of the mitochondrial cytochrome c-oxidase subunit I to identify nine genotypes (Trichinella spiralis, Trichinella britovi-European strains, Trichinella britovi-Japanese strains, Trichinella nativa, Trichinella nelsoni, Trichinella T5, Trichinella T6, Trichinella T8 and Trichinella pseudospiralis) in the genus Trichinella. Partial mitochondrial cytochrome c-oxidase subunit I genes of nine genotypes were amplified by polymerase chain reaction, sequenced, and digested with three restriction endonucleases (Mse I, Alu I and Bsp1248 I). This polymerase chain reaction based restriction fragment length polymorphism method allowed the identification of Trichinella genotypes. Trichinella spiralis, Trichinella britovi-Japanese strains, Trichinella nelsoni, T5 and Trichinella pseudospiralis were distinguishable by digestion with Mse I. Trichinella britovi-European strains and Trichinella T8 were distinguishable by digestion using Alu I, and Trichinella nativa and Trichinella T6 were distinguishable by double-digestion with Mse I and Bsp1286 I. The results obtained with this polymerase chain reaction based restriction fragment length polymorphism assay confirmed those previously reported by others and support the separation of the Japanese isolates as a new genotype, namely Trichinella T9.  相似文献   

12.
Isolates of the nematode genus Trichinella from sylvatic hosts differ in their potential to reproduce in domestic swine. The structure of the genomic DNA from 13 sylvatic isolates from North America and 5 pig isolates, 4 from North America and 1 from Asia, was examined and correlated with the infectivity of the isolate for domestic pigs. DNA restriction fragment length differences, identified by ethidium bromide staining and by hybridization with 32P-labeled ribosomal RNA, served as molecular markers to classify each isolate. All 5 pig isolates and 8 of 13 sylvatic isolates had a high infectivity and reproductive capacity in pigs. All isolates that were highly infectious for pigs regardless of host origin had similar DNA characteristics and were classified operationally as T. spiralis spiralis (pig) and those of the second group as T. spiralis ssp. A DNA clone of repetitive DNA from T. s. spiralis, pBP2, was selected from a library of genomic DNA in plasmid pUC8. When used as a probe, pBP2 hybridized only to the DNA of T. s. spiralis isolates, thus making it a useful diagnostic reagent to predict whether new isolates are highly infectious for pigs (i.e., T. s. spiralis). These results show that T. s. spiralis occurs in wild mammals and this should be considered a serious obstacle to efforts to eradicate trichinellosis from domestic swine.  相似文献   

13.
The nematodes Trichinella spiralis and Trichinella pseudospiralis are both intracellular parasites of skeletal muscle cells and induce profound alterations in the host cell resulting in a re-alignment of muscle-specific gene expression. While T. spiralis induces the production of a collagen capsule surrounding the host-parasite complex, T. pseudospiralis exists in a non-encapsulated form and is also characterised by suppression of the host inflammatory response in the muscle. These observed differences between the two species are thought to be due to variation in the proteins excreted or secreted (ES proteins) by the muscle larva. In this study, we use a global proteomics approach to compare the ES protein profiles from both species and to identify individual T. pseudospiralis proteins that complement earlier studies with T. spiralis. Following two-dimensional gel electrophoresis, tandem mass spectrometry was used to identify the peptide spots. In many cases identification was aided by the determination of partial peptide sequence from selected mass ions. The T. pseudospiralis spots identified included the major secreted glycoproteins and the secreted 5'-nucleotidase. Furthermore, two major groups of T. spiralis-specific proteins and several T. pseudospiralis-specific proteins were identified. Our results demonstrate the value of proteomics as a tool for the identification of ES proteins that are differentially expressed between Trichinella species and as an aid to identifying key parasite proteins that are involved in the host-parasite interaction. The value of this approach will be further enhanced by data arising out the current T. spiralis genome sequencing project.  相似文献   

14.
Crude and immunoaffinity-purified excretory-secretory antigens derived from a domestic pig isolate of Trichinella spiralis were used in an enzyme-linked immunosorbent assay to test serum from mice infected with 25 different pig and wild animal isolates of T. spiralis sspp. All of the sera were found positive by ELISA using either of the antigen preparations, indicating all isolates shared certain antigen epitopes. Excretory-secretory antigens were prepared from 3 distinct isolates of T. spiralis sspp.--Trichinella spiralis spiralis (pig isolate), Trichinella spiralis nativa (polar bear isolate), and Trichinella spiralis pseudospiralis--and compared by electrophoresis and monoclonal antibody binding. While protein profiles varied among the isolates, a monoclonal antibody recognizing a major immunodiagnostic antigen epitope bound all 3 antigen preparations. However, this antigen epitope occurred on different molecular weight excretory-secretory proteins from the different isolates.  相似文献   

15.
The genetic diversity within the genus Trichinella was studied using cleavage fragment length polymorphism (CFLP) analysis. The CFLP method generates specific fingerprints based on single nucleotide mutations. By this method the amplified intergenic regions of the 5S rRNA genes of the eight different genotypes of Trichinella were analysed. The CFLP pattern of T. spiralis was completely different compared with the sylvatic species T. britovi, T. nativa, T. nelsoni, and the genotypes Trichinella T5, Trichinella T6 and Trichinella T8. The T. pseudospiralis intergenic region can be differentiated by size from the other species of Trichinella.  相似文献   

16.
17.
Major alterations are induced in muscle cells infected by either Trichinella spiralis or Trichinella pseudospiralis. To investigate the response of muscle to these infections we have analyzed the expression of acid phosphatase (ACP, EC 3.1.3.2), adult skeletal muscle myosin heavy chain, and muscle tropomyosin proteins in infected mouse skeletal muscle cells. Using T. spiralis-infected cells, we provide strong evidence that the tartrate-sensitive ACP of these cells was synthesized by the infected cell and localized in lysosomes. Isoenzyme analysis indicated that the ACP activity was of host muscle cell origin and the specific activity of this ACP was 2.5 times greater than that in associated inflammatory cells. Increased ACP activity was also demonstrated in muscle cells infected by T. pseudospiralis. In synchronized muscle infections, increased ACP activity was detected at 5 days post-muscle infection for both parasites. ACP activity was further increased in infected muscle cells at later times tested. This increased infected cell ACP activity represents the earliest positive enzyme marker yet described indicating expression of the infected cell phenotype. In contrast, myofibrillar proteins were not detected in muscle cells chronically infected by T. spiralis but were detected in muscle cells infected by T. pseudospiralis. Decrease in myofibrillar protein levels was detected by 10 days post-muscle infection by T. spiralis. The data presented demonstrate significant differences and similarities in the phenotypes of muscle cells infected by these two parasites and establish criteria that could facilitate identification of parasite factors that may be involved in these phenomena.  相似文献   

18.
Robinson MW  Connolly B 《Proteomics》2005,5(17):4525-4532
Trichinella spiralis is an intracellular nematode parasite of mammalian skeletal muscle. Infection of the muscle cell leads to the formation of a host-parasite complex that results in profound alterations to the host cell and a re-alignment of muscle-specific gene expression. The role of parasite excretory-secretory (ES) proteins in mediating these effects is currently unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, a global proteomics approach was used to analyse the ES proteins from T. spiralis muscle larvae. Following 2-DE of ES proteins,MALDI-TOF-MS and LC-MS/MS were used to identify the peptide spots. Specific Trichinella EST databases were assembled and used to analyse the data. Despite the current absence of a Trichinella genome-sequencing project, 43 out of 52 protein spots analysed were identified and included the major secreted glycoproteins. Other novel proteins were identified from matches with sequences in the T. spiralis database. Our results demonstrate the value of proteomics as a tool for the identification of Trichinella ES proteins and in the study of the molecular mechanism underpinning the formation of the host-parasite complex during Trichinella infections.  相似文献   

19.
Allozyme analysis was carried out on 152 Trichinella isolates from synanthropic and wild animals and from humans; the isolates were collected from 5 continents. The analysis, involving 27 enzymes, revealed the presence of 8 distinct gene pools, termed T1-T8. Four of the genetic groups represent the 4 previously proposed species: Trichinella spiralis sensu stricto (T1), Trichinella nativa (T2), Trichinella nelsoni (T7), and Trichinella pseudospiralis (T4). The other 4, T3, T5, T6, and T8 are distinct from previously described species. The absence of allozymic hybrid patterns among even sympatric groups indicates a lack of gene flow among the groups. Principal component analysis and the unweighted pair group method of analysis were used to assemble allozyme patterns of the 152 isolates into discrete groups and to show their relative relationships. Both analyses indicated the presence of 8 primary clusters that correlated with the gene pools revealed by direct allozyme profile analysis. The absence of evidence of gene flow among the gene pools and the high level of allozymic differentiation between the cluster groups support the concept that the genus Trichinella is composed of several sibling species.  相似文献   

20.
Biological variation in Trichinella species and genotypes   总被引:1,自引:0,他引:1  
At present, the genus Trichinella comprises seven species of which five have encapsulated muscle larvae (T. spiralis, T. nativa, T. britovi, T. nelsoni and T. murrelli) and two do not (T. pseudospiralis and T. papuae) plus three genotypes of non-specific status (T6, T8 and T9). The diagnostic characteristics of these species are based on biological, biochemical and genetic criteria. Of biological significance is variation observed among species and isolates in parameters such as infectivity and immunogenicity. Infectivity of Trichinella species or isolates is determined, among other considerations, by the immune status of the host in response to species- or isolate-specific antigens. Common and particular antigens determine the extent of protective responses against homologous or heterologous challenge. The kinetics of isotype, cytokine and inflammatory responses against T. spiralis infections are isolate-dependent. Trichinella spiralis and T. pseudospiralis induce different dose-dependent T-cell polarizations in the early host response, with T. spiralis initially preferentially promoting Th1-type responses before switching to Th2 and T. pseudospiralis driving Th2-type responses from the outset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号