首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The Optic atrophy 1 protein (OPA1) is a key element in the dynamics and morphology of mitochondria. We demonstrated that the absence of IκB kinase-α, which is a key element of the nonclassical NF-κB pathway, has an impact on the mitochondrial network morphology and OPA1 expression. In contrast, the absence of NF-κB essential modulator (NEMO) or IκB kinase-β, both of which are essential for the canonical NF-κB pathway, has no impact on mitochondrial dynamics. Whereas Parkin has been reported to positively regulate the expression of OPA1 through NEMO, herein we found that PARK2 overexpression did not modify the expression of OPA1. PARK2 expression reduced the levels of Bax, and it prevented stress-induced cell death only in Bak-deficient mouse embryonic fibroblast cells. Collectively, our results point out a role of the nonclassical NF-κB pathway in the regulation of mitochondrial dynamics and OPA1 expression.Mitochondria perform multiple functions that are critical to the maintenance of cellular homeostasis. Mitochondrial dysfunctions have been linked to the development of degenerative diseases and aging. Damaged mitochondria are removed by mitophagy, a process partially regulated by the PARK2-encoded E3 ubiquitin ligase (Parkin) in a PTEN-induced putative protein kinase 1 (PINK1)-dependent manner.1, 2, 3, 4 During mitophagy, the phosphorylation of mitofusin (Mfn) 2 by PINK1 has been suggested to induce the recruitment of Parkin to the mitochondria in cardiomyocytes.5 However, previous groups have shown that that Mfn 1 and 2 are dispensable for Parkin-dependent mitophagy in fibroblasts, whereas the Parkin-dependent degradation of these proteins may impair fusion of damaged mitochondria with the healthy network.6, 7, 8 PINK1 and Parkin thus act as a quality control machinery on the outer mitochondrial membrane (OMM) to preserve mitochondrial integrity through the ubiquitination of OMM proteins.9, 10 Moreover, through its E3 ubiquitin ligase activity,11, 12 Parkin was reported to bind to the linear ubiquitin chain assembly complex (LUBAC) and to increase the ubiquitination of NF-κB essential modulator (NEMO),13 a component of the classical NF-κB signaling pathway.14 Müller–Rischart et al. also proposed that Parkin positively regulates the expression of the mitochondrial guanosine triphosphatase Optic atrophy 1 protein (OPA1) through linear ubiquitination of NEMO.13 OPA1 is a regulator of mitochondrial inner membrane fusion and cristae remodeling.15, 16, 17 A defect in OPA1 expression is associated with mitochondrial network fragmentation and enhanced sensitivity of the cells to undergo apoptosis by promoting cytochrome c release from the mitochondria.18, 19, 20 Because NEMO-deficient mouse embryonic fibroblast (MEF) cells display a normal mitochondrial network morphology, we decided to re-examine the role of Parkin in regulating OPA1 expression through the NF-κB signaling pathway.  相似文献   

4.
Sun SC  Liu ZG 《Cell research》2011,21(1):1-2
Since its discovery about 25 years ago,the NF-κB signaling pathway has remained one of the exciting and extensively studied fields of biomedical research.It is...  相似文献   

5.

Background

Viral myocarditis, which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. However, efficient therapies targeting inflammation are still lacking and much needed. A20, also known as tumor necrosis factor alpha induced protein 3 (TNFAIP3) is a key negative regulator of inflammation. But whether A20 may affect cardiac inflammation during acute viral myocarditis remains to be elucidated. The aim of this study was to investigate the potential protective effect of A20 on CVB3-induced myocarditis.

Methodology/Principal Findings

Mice were intraperitoneally inoculated with CVB3 to establish acute viral myocarditis model. We found that the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemotactic protein-1 (MCP-1) were markedly and persistently increased during the progression of CVB3-induced myocarditis, and positively correlated with the disease severity. Notably, intravenous injection in vivo with adenovirus expressed A20 (Ad-A20) remarkably reduced CVB3-induced pro-inflammatory cytokines production and alleviated the severity of myocarditis. Further, we observed that nuclear factor-kappaB (NF-κB) signaling which mediates inflammatory response was significantly inhibited in CVB3-infected mice with Ad-A20 treatment. Finally, we revealed that A20 was required to inhibit CVB3-induced NF-κB signaling by restricting TNF receptor associated factor 6 (TRAF6) ubiquitylation.

Conclusion/Significance

This study demonstrates the protective role of A20 against CVB3-induced myocarditis, which may provide a new therapeutic strategy for the treatment of viral myocarditis.  相似文献   

6.
7.
8.
9.
Linear polyubiquitination of proteins has recently been implicated in NF-κB signalling and is mediated by the linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP and Sharpin. However, the mechanisms that regulate linear ubiquitination are still unknown. Here, we show that A20 is rapidly recruited to NEMO and LUBAC upon TNF stimulation and that A20 inhibits LUBAC-induced NF-κB activation via its C-terminal zinc-finger 7 (ZF7) domain. Expression of a polypeptide corresponding to only ZF7 was sufficient to inhibit TNF-induced NF-κB activation. Both A20 and ZF7 can form a complex with NEMO and LUBAC, and are able to prevent the TNF-induced binding of NEMO to LUBAC. Finally, we show that ZF7 preferentially binds linear polyubiquitin chains in vitro, indicating A20–ZF7 as a novel linear ubiquitin-binding domain (LUBID). We thus propose a model in which A20 inhibits TNF- and LUBAC-induced NF-κB signalling by binding to linear polyubiquitin chains via its seventh zinc finger, which prevents the TNF-induced interaction between LUBAC and NEMO.  相似文献   

10.
11.
12.
13.
14.
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses.  相似文献   

15.
Cancer cells have elevated aerobic glycolysis that is termed the Warburg effect. But several tumor cells, including leukemic cells, also increase glutamine metabolism, which is initiated by glutaminase (GLS). The microRNA (miRNA) miR-23 targets GLS mRNA and inhibits expression of GLS protein. Here we show that in human leukemic Jurkat cells the NF-κB p65 subunit binds to miR-23a promoter and inhibits miR-23a expression. Histone deacetylase (HDAC) inhibitors release p65-induced inhibition. Jurkat cells growing in glutamine decrease proliferation due to cell accumulation in G0/G1 phase. Nevertheless, cells get used to this new source of energy by increasing GLS expression, which correlates with an increase in p65 expression and its translocation to the nucleus, leading to a higher basal NF-κB activity. Jurkat cells overexpressing p65 show increase basal GLS expression and proliferate faster than control cells in glutamine medium. Overexpressing miR-23a in leukemic cells impaired glutamine use and induces mitochondrial dysfunction leading to cell death. Therefore, p65 activation decreases miR-23a expression, which facilitates glutamine consumption allowing leukemic cells to use this alternative source of carbon and favoring their adaptation to the metabolic environment.  相似文献   

16.
Lim KH  Kim KH  Choi SI  Park ES  Park SH  Ryu K  Park YK  Kwon SY  Yang SI  Lee HC  Sung IK  Seong BL 《PloS one》2011,6(8):e22258
Hepatitis B virus (HBV) infection is one of the major causes of hepatocellular carcinoma (HCC) development. Hepatitis B virus X protein (HBx) is known to play a key role in the development of hepatocellular carcinoma (HCC). Several cellular proteins have been reported to be over-expressed in HBV-associated HCC tissues, but their role in the HBV-mediated oncogenesis remains largely unknown. Here, we explored the effect of the over-expressed cellular protein, a ribosomal protein S3a (RPS3a), on the HBx-induced NF-κB signaling as a critical step for HCC development. The enhancement of HBx-induced NF-κB signaling by RPS3a was investigated by its ability to translocate NF-κB (p65) into the nucleus and the knock-down analysis of RPS3a. Notably, further study revealed that the enhancement of NF-κB by RPS3a is mediated by its novel chaperoning activity toward physiological HBx. The over-expression of RPS3a significantly increased the solubility of highly aggregation-prone HBx. This chaperoning function of RPS3a for HBx is closely correlated with the enhanced NF-κB activity by RPS3a. In addition, the mutational study of RPS3a showed that its N-terminal domain (1-50 amino acids) is important for the chaperoning function and interaction with HBx. The results suggest that RPS3a, via extra-ribosomal chaperoning function for HBx, contributes to virally induced oncogenesis by enhancing HBx-induced NF-κB signaling pathway.  相似文献   

17.
HSCARG is a newly identified nuclear factor-κB (NF-κB) inhibitor that plays important roles in cell growth. Our previous study found that HSCARG could shuttle between the nucleus and cytoplasm by sensing the change in cellular redox states. To further investigate the mechanism of HSCARG translocation and its effect on the regulation of NF-κB activity, we identified a previously uncharacterized nuclear export signal (NES) at residues 272-278 of HSCARG that is required for its cytoplasmic translocation. This leucine-rich NES was found to be mediated by chromosome region maintenance 1. More importantly, accumulation of HSCARG in the nucleus occurred following a mutation in the NES or oxidative stress, which attenuated the inhibition of NF-κB by HSCARG. These results indicate that nucleocytoplasmic translocation of HSCARG plays an important role in fine-tuning NF-κB signaling.  相似文献   

18.
《Phytomedicine》2014,21(11):1483-1489
We have previously demonstrated that Greek thyme honey inhibits significantly the cell viability of human prostate cancer cells. Herein, 15 thyme honey samples from several regions of Greece were submitted to phytochemical analysis for the isolation, identification and determination (through modern spectral means) of the unique thyme honey monoterpene, the compound trihydroxy ketone E-4-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)-but-3-en-2-one.We investigated the anti-growth and apoptotic effects of the trihydroxy ketone on PC-3 human androgen independent prostate cancer cells using MTT assay and Annexin V-FITC respectively. The molecular pathways involved to such effects were further examined by evaluating its ability to inhibit (a) the NF-κB phosphorylation (S536), (b) JNK and Akt phosphorylation (Thr183/Tyr185 and S473 respectively) and (c) IL-6 production, using ELISA method. The anti-microbial effects of the trihydroxy ketone against a panel of nine pathogenic bacteria and three fungi were also assessed.The trihydroxy ketone exerted significant apoptotic activity in PC-3 prostate cancer cells at 100 μM, while it inhibited NF-κB phosphorylation and IL-6 secretion at a concentration range 10−6–10−4 M. Akt and JNK signaling were not found to participate in this process. The trihydroxy ketone exerted significant anti-microbial profile against many human pathogenic bacteria and fungi (MIC values ranged from 0.04 to 0.57 mg/ml). Conclusively, the Greek thyme honey-derived monoterpene exerted significant apoptotic activity in PC-3 cells, mediated, at least in part, through reduction of NF-κB activity and IL-6 secretion and may play a key role in the anti-growth effect of thyme honey on prostate cancer cells.  相似文献   

19.
NLRC5 is an important regulator in innate immune responses. However, the ability of NLRC5 to inhibit NF-κB activation is controversial in different cell types. How dynamic modification of NLRC5 shapes NF-κB signaling remains unknown. We demonstrated that NLRC5 undergoes robust ubiquitination by TRAF2/6 after lipopolysaccharide treatment, which leads to dissociation of the NLRC5–IκB kinase complex. Experimental and mathematical analyses revealed that the K63-linked ubiquitination of NLRC5 at lysine 1,178 generates a coherent feedforward loop to further sensitize NF-κB activation. Meanwhile, we found USP14 specifically removes the polyubiquitin chains from NLRC5 to enhance NLRC5-mediated inhibition of NF-κB signaling. Furthermore, we found that different cell types may exhibit different sensitivities to NF-κB activation in response to NLRC5 ablation, possibly as a result of the various intrinsic levels of deubiquitinases and NLRC5. This might partially reconcile controversial studies and explain why NLRC5 exhibits diverse inhibitory efficiencies. Collectively, our results provide the regulatory mechanisms of reversible NLRC5 ubiquitination and its role in the dynamic control of innate immunity.  相似文献   

20.
S100B is a soluble protein secreted by astrocytes that exerts pro-survival or pro-apoptotic effects depending on the concentration reached in the extracellular millieu. The S100B receptor termed RAGE (for receptor for advanced end glycation products) is highly expressed in the developing brain but is undetectable in normal adult brain. In this study, we show that RAGE expression is induced in cortical neurons of the ischemic penumbra. Increased RAGE expression was also observed in primary cortical neurons exposed to excitotoxic glutamate (EG). S100B exerts effects on survival pathways and neurite extension when the cortical neurons have been previously exposed to EG and these S100B effects were prevented by anti-RAGE blocking antibodies. Furthermore, nuclear factor kappa B (NF-κB) is activated by S100B in a dose- and RAGE-dependent manner and neuronal death induced by NF-κB inhibition was prevented by S100B that restored NF-κB activation levels. Together, these findings suggest that excitotoxic damage can induce RAGE expression in neurons from ischemic penumbra and demonstrate that cortical neurons respond to S100B through engagement of RAGE followed by activation of NF-κB signaling. In addition, basal NF-κB activity in neurons is crucial to modulate the extent of pro-survival or pro-death S100B effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号