共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
M Laforge V Rodrigues R Silvestre C Gautier R Weil O Corti J Estaquier 《Cell death and differentiation》2016,23(1):89-98
The Optic atrophy 1 protein (OPA1) is a key element in the dynamics and morphology of mitochondria. We demonstrated that the absence of IκB kinase-α, which is a key element of the nonclassical NF-κB pathway, has an impact on the mitochondrial network morphology and OPA1 expression. In contrast, the absence of NF-κB essential modulator (NEMO) or IκB kinase-β, both of which are essential for the canonical NF-κB pathway, has no impact on mitochondrial dynamics. Whereas Parkin has been reported to positively regulate the expression of OPA1 through NEMO, herein we found that PARK2 overexpression did not modify the expression of OPA1. PARK2 expression reduced the levels of Bax, and it prevented stress-induced cell death only in Bak-deficient mouse embryonic fibroblast cells. Collectively, our results point out a role of the nonclassical NF-κB pathway in the regulation of mitochondrial dynamics and OPA1 expression.Mitochondria perform multiple functions that are critical to the maintenance of cellular homeostasis. Mitochondrial dysfunctions have been linked to the development of degenerative diseases and aging. Damaged mitochondria are removed by mitophagy, a process partially regulated by the PARK2-encoded E3 ubiquitin ligase (Parkin) in a PTEN-induced putative protein kinase 1 (PINK1)-dependent manner.1, 2, 3, 4 During mitophagy, the phosphorylation of mitofusin (Mfn) 2 by PINK1 has been suggested to induce the recruitment of Parkin to the mitochondria in cardiomyocytes.5 However, previous groups have shown that that Mfn 1 and 2 are dispensable for Parkin-dependent mitophagy in fibroblasts, whereas the Parkin-dependent degradation of these proteins may impair fusion of damaged mitochondria with the healthy network.6, 7, 8 PINK1 and Parkin thus act as a quality control machinery on the outer mitochondrial membrane (OMM) to preserve mitochondrial integrity through the ubiquitination of OMM proteins.9, 10 Moreover, through its E3 ubiquitin ligase activity,11, 12 Parkin was reported to bind to the linear ubiquitin chain assembly complex (LUBAC) and to increase the ubiquitination of NF-κB essential modulator (NEMO),13 a component of the classical NF-κB signaling pathway.14 Müller–Rischart et al. also proposed that Parkin positively regulates the expression of the mitochondrial guanosine triphosphatase Optic atrophy 1 protein (OPA1) through linear ubiquitination of NEMO.13 OPA1 is a regulator of mitochondrial inner membrane fusion and cristae remodeling.15, 16, 17 A defect in OPA1 expression is associated with mitochondrial network fragmentation and enhanced sensitivity of the cells to undergo apoptosis by promoting cytochrome c release from the mitochondria.18, 19, 20 Because NEMO-deficient mouse embryonic fibroblast (MEF) cells display a normal mitochondrial network morphology, we decided to re-examine the role of Parkin in regulating OPA1 expression through the NF-κB signaling pathway. 相似文献
4.
Since its discovery about 25 years ago,the NF-κB signaling pathway has remained one of the exciting and extensively studied fields of biomedical research.It is... 相似文献
5.
6.
Background
Viral myocarditis, which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. However, efficient therapies targeting inflammation are still lacking and much needed. A20, also known as tumor necrosis factor alpha induced protein 3 (TNFAIP3) is a key negative regulator of inflammation. But whether A20 may affect cardiac inflammation during acute viral myocarditis remains to be elucidated. The aim of this study was to investigate the potential protective effect of A20 on CVB3-induced myocarditis.Methodology/Principal Findings
Mice were intraperitoneally inoculated with CVB3 to establish acute viral myocarditis model. We found that the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemotactic protein-1 (MCP-1) were markedly and persistently increased during the progression of CVB3-induced myocarditis, and positively correlated with the disease severity. Notably, intravenous injection in vivo with adenovirus expressed A20 (Ad-A20) remarkably reduced CVB3-induced pro-inflammatory cytokines production and alleviated the severity of myocarditis. Further, we observed that nuclear factor-kappaB (NF-κB) signaling which mediates inflammatory response was significantly inhibited in CVB3-infected mice with Ad-A20 treatment. Finally, we revealed that A20 was required to inhibit CVB3-induced NF-κB signaling by restricting TNF receptor associated factor 6 (TRAF6) ubiquitylation.Conclusion/Significance
This study demonstrates the protective role of A20 against CVB3-induced myocarditis, which may provide a new therapeutic strategy for the treatment of viral myocarditis. 相似文献7.
8.
9.
10.
Kelly Verhelst Isabelle Carpentier Marja Kreike Laura Meloni Lynn Verstrepen Tobias Kensche Ivan Dikic Rudi Beyaert 《The EMBO journal》2012,31(19):3845-3855
Linear polyubiquitination of proteins has recently been implicated in NF-κB signalling and is mediated by the linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP and Sharpin. However, the mechanisms that regulate linear ubiquitination are still unknown. Here, we show that A20 is rapidly recruited to NEMO and LUBAC upon TNF stimulation and that A20 inhibits LUBAC-induced NF-κB activation via its C-terminal zinc-finger 7 (ZF7) domain. Expression of a polypeptide corresponding to only ZF7 was sufficient to inhibit TNF-induced NF-κB activation. Both A20 and ZF7 can form a complex with NEMO and LUBAC, and are able to prevent the TNF-induced binding of NEMO to LUBAC. Finally, we show that ZF7 preferentially binds linear polyubiquitin chains in vitro, indicating A20–ZF7 as a novel linear ubiquitin-binding domain (LUBID). We thus propose a model in which A20 inhibits TNF- and LUBAC-induced NF-κB signalling by binding to linear polyubiquitin chains via its seventh zinc finger, which prevents the TNF-induced interaction between LUBAC and NEMO. 相似文献
11.
12.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2023,1870(5):119460
20-Hydroxyecdysone (20E) is known to have numerous pharmacological activities and can be used to treat diabetes and cardiovascular diseases. However, the protective effects of 20E against endothelial dysfunction and its targets remain unclear. In the present study, we revealed that 20E treatment could modulate the release of the endothelium-derived vasomotor factors NO, PGI2 and ET-1 and suppress the expression of ACE in TNF-α-induced 3D-cultured HUVECs. In addition, 20E suppressed the expression of CD40 and promoted the expression of SIRT6 in TNF-α-induced 3D-cultured HUVECs. The cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular docking results demonstrated that 20E binding increased SIRT6 stability, indicating that 20E directly bound to SIRT6 in HUVECs. Further investigation of the underlying mechanism showed that 20E could upregulate SIRT6 levels and that SIRT6 knockdown abolished the regulatory effect of 20E on CD40 in TNF-α-induced HUVECs, while SIRT6 overexpression further improved the effect of 20E. Moreover, we found that 20E could reduce the acetylation of NF-κB p65 (K310) through SIRT6, but the catalytic inactive mutant SIRT6 (H133Y) did not promote the deacetylation of NF-κB p65, suggesting that the inhibitory effect of 20E on NF-κB p65 was dependent on SIRT6 deacetylase activity. Additionally, our results indicated that 20E inhibited NF-κB via SIRT6, and the expression of CD40 was increased in HUVECs treated with SIRT6 siRNA and NF-κB inhibitor. In conclusion, the present study demonstrates that 20E exerts its effect through SIRT6-mediated deacetylation of NF-κB p65 (K310) to inhibit CD40 expression in ECs, and 20E may have therapeutic potential for the treatment of cardiovascular diseases. 相似文献
13.
Lilei He Guoju Hong Lin Zhou Jianguo Zhang Jian Fang Wei He Jennifer Tickner Xiaorui Han Lilian Zhao Jiake Xu 《Journal of cellular physiology》2019,234(4):4267-4276
Identification of natural compounds that inhibit osteoclastogenesis will facilitate the development of antiresorptive treatment of osteolytic bone diseases. Asiaticoside is a triterpenoid derivative isolated from Centella asiatica, which exhibits varying biological effects like angiogenesis, anti-inflammation, wound healing, and osteogenic differentiation. However, its role in osteoclastogenesis remains unknown. Here, we show that Asiaticoside can suppress RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner. Asiaticoside attenuated the expression of osteoclast marker genes including Ctsk, Atp6v0d2, Nfatc1, Acp5, and Dc-stamp. Furthermore, Asiaticoside inhibited RANKL-mediated NF-κB and NFATc1 activities, and RANKL-induced calcium oscillation. Collectively, this study demonstrates that Asiaticoside inhibited osteoclast formation and function through attenuating RANKL-induced key signaling pathways, which may indicate that Asiaticoside is a potential antiresorptive agent against osteoclast-related osteolytic bone diseases. 相似文献
14.
15.
Hiroyuki Kameda 《Biochemical and biophysical research communications》2009,378(4):744-749
Cytoplasmic zinc finger protein A20 functionally dampens inflammatory signals and apoptosis via inhibition of NF-κB activation. We have reported that Ymer interacts with A20 and lysine (K)-63-linked polyubiquitin chain and that Ymer inhibits NF-κB signaling in collaboration with A20. It has also been reported that Ymer is phosphorylated by EGF stimulation. We found that Ymer was considerably phosphorylated on tyrosine residues also via Src family kinases such as Lck. A luciferase reporter assay showed that mutation of tyrosines on Ymer (YmerY217/279/304F) results in loss of the inhibitory activity for NF-κB signaling. Furthermore, a soft agar colony formation assay showed that the combination of SrcY527F and YmerY217/279/304F has no ability for anchorage-independent growth, suggesting that tyrosine phosphorylation of Ymer is important for inhibition of the NF-κB-mediated apoptotic pathway. These findings demonstrate that Ymer is likely to be a negative regulator for the NF-κB signaling pathway. 相似文献
16.
17.
18.
Cholangiocarcinoma (CC) is a devastating disease associated with poor survival rate. microRNAs (miRNAs) have recently been reported to assume a great role in CC development. This research aims to explore the functions of miR-874 in regulating epithelial mesenchymal transition (EMT) in CC. In obtained CC tissues and cells, miR-784 expression was assessed by RT-qPCR, and CCNE1 expression by RT-qPCR or immunohistochemistry. Dual-luciferase reporter assay was implemented for relationship between miR-784 and CCNE1. The roles of miR-784, CCNE1 and the NF-κB pathway in CC were investigated on human CC cell lines. CCNE1 was found to be highly expressed in CC while miR-874 expression was lowered in CC tissues and cells, thereby suggesting a negative regulatory effect of CCNE1. In QBC939 and RBE cells, overexpressing miR-874 or silencing CCNE1 led to augmented IκBα and E-cadherin expression, but diminished CCNE1, NF-κB, N-cadherin, and Vimentin expression. Moreover, overexpression of miR-874 or CCNE1 silencing led to reduced cell proliferation, invasion, and migration capabilities. In conclusion, we demonstrated that miR-874 negatively regulated CCNE1 to inhibit the NF-κB pathway, thus consequently suppressing EMT in CC. Therefore, the overexpression of miR-874 might bring favorable outcomes for the treatment of CC. 相似文献
19.
van de Laar L van den Bosch A van der Kooij SW Janssen HL Coffer PJ van Kooten C Woltman AM 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(12):7252-7261
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses. 相似文献
20.
The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. 相似文献