首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability and unfolding of mammalian and microbial α-amylases have been intensively investigated. However, there is only limited information available on the structural stability of plant α-amylases, namely of the two isoenzymes from barley AMY1 and AMY2, of the α-amylase from mung bean (Vigna radiata), and of the α-amylase from malted sorghum (Sorghum bicolor). We report here the stability of soyabean α-amylase (GMA), against elevated temperatures and chemical denaturants (GndHCl) by employing circular dichroism and fluorescence spectroscopy. Since it is well-known that calcium ions play a crucial role for enzymatic activity and stability of a-amylases, we performed our studies with calcium bound and calcium free GMA. The thermal unfolding transition temperature decreased from 72°C for calcium saturated samples to 57°C for the case of calcium depleted GMA. Similarly, the GndHCl transition concentration was lowered from 0.70 M for calcium bound GMA to 0.41 M in the absence of calcium. Thermal unfolding of GMA irreversible due to aggregation of the unfolded state. GMA unfolded in 6 M GndHCl shows high degree of reversibility after diluting the unfolded enzyme in native buffer containing 7 M glycerol. Furthermore, the refolded enzyme showed 93% of activity.  相似文献   

2.
Sulfolobus solfataricus 5'-deoxy-5'-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138-C205 and C200-C262) and a CXC motif (C259-C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100°C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102°C and 99°C respectively. Under reducing conditions these values decrease by 4°C and 8°C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90°C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.  相似文献   

3.
Hemocyanin (Hc) is a type-3 copper protein, containing dioxygen-binding active sites consisting of paired copper atoms. In the present study the thermal unfolding of the Hc from the marine mollusc Rapana thomasiana (RtH) has been investigated by combining differential scanning calorimetry, Fourier transform infrared (FTIR) and UV-vis absorption spectroscopy. Two important stages in the unfolding pathway of the Hc molecule were discerned. A first event, with nonmeasurable heat absorption, occurring around 60°C, lowers the binding of dioxygen to the type-3 copper groups. This pretransition is reversible and is ascribed to a slight change in the tertiary structure. In a second stage, with midpoint around 80°C, the protein irreversibly unfolds with a loss of secondary structure and formation of amorphous aggregates. Experiments with the monomeric structural subunits, RtH1 and RtH2, indicated that the heterogeneity in the process of thermal denaturation can be attributed to the presence of multiple 50kDa functional units with different stability. In accordance, the irreversible unfolding of a purified functional unit (RtH2-e) occurred at a single transition temperature. At slightly alkaline pH (Tris buffer) the C-terminal β-sheet rich domain of the functional unit starts to unfold before the α-helix-rich N-terminal (copper containing) domain, triggering the collapse of the global protein structure. Even around 90°C some secondary structure is preserved as shown by the FTIR spectra of all investigated samples, confirming the high thermostability of molluscan Hc.  相似文献   

4.
A comparative study of the thermal stability of wild type poplar plastocyanin and of a mutant form containing a disulfide bridge between residues 21 and 25 was performed using differential scanning calorimetry and optical spectroscopic techniques. For wild type plastocyanin the transition temperature, determined from the calorimetric profiles, is 62.7 degrees C at the scan rate of 60 degrees C/h, whereas for the mutant it is reduced to 58.0 degrees C. In both cases, the endothermic peak is followed by an exothermic one at higher temperatures. The unfolding process monitored by optical absorption at 596 nm also reveals a reduced thermal stability of the mutated plastocyanin compared to the wild type protein, with transition temperatures of 54.8 and 58.0 degrees C, respectively. For both proteins, the denaturation process was found to be irreversible and dependent on the scan rate preventing the thermodynamic analysis of the unfolding process. In parallel, small conformational changes between wild type and mutant plastocyanin emerge from fluorescence spectroscopy measurements. Here, a difference in the interaction of the two proteins between the microenvironment surrounding the fluorophores and the solvent was proposed. The destabilization observed in the disulfide containing mutant of plastocyanin suggests that the double mutation, Ile21Cys and Glu25Cys, introduces strain into the protein which offsets the stabilizing effect expected from the formation of a covalent crosslink.  相似文献   

5.
The thermal stability of umecyanin, a stellacyanin from horseradish roots, has been investigated by differential scanning calorimetry, optical absorption and fluorescence spectroscopy at neutral and alkaline pH. Above pH 9 the Cu(II) protein experiences a blue shift of the main visible absorption band at approximately 600 nm and changes colour from blue to violet. The thermal transition of the protein is irreversible and occurs between 61.4 and 68.8 degrees C at pH 7.5 and between 50.7 and 57.4 degrees C at pH 9.8. The calorimetric data indicates that at both pH values the thermally induced transition of the protein between the native and denaturated states can be described in terms of the classical Lumry-Eyring unfolding model Native<-->Unfolded-->Final. The analysis of the reversible step in the unfolding pathway demonstrates a significant reduction in conformational stability (DeltaG) of the alkaline form of the protein. Such a reduction is consistent with an enhanced flexibility of UMC at high pH and has mainly entropic character.  相似文献   

6.
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in DeltaG can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule.  相似文献   

7.
Differential scanning calorimetry (DSC) was applied to elucidate the thermal behavior of fowl feather keratins (barbs, rachis, and calamus) with different morphological features. The DSC curves exhibited a clear and relatively large endothermic peak at about 110-160 degrees C in the wet condition. A considerable decrease in transition temperature with urea and its helical structure content estimated by Fourier transform infrared spectroscopy (FT-IR), and the disappearance of one of the diffraction peaks with heating at 160 degrees C for 30 min, indicated that DSC could be used to evaluate the thermal behavior of keratin. Barbs showed a lower denaturation temperature than rachis and calamus. The pulverized samples showed a slightly higher denaturation temperature than the native samples. In the dry condition, thermal transition occurred in a markedly higher temperature region close to 170-200 degrees C. It is hence concluded that fowl feather keratins have very high thermal stability, and that the elimination of water brings about even greater thermal stability.  相似文献   

8.
The heat activation of bacterial spores was studied by means of differential thermal analysis in the temperature range 30-110 degrees C using the spores of Bacillus cereus. The thermogram showed three endothermic peaks at 56, 95, and 103 degrees C with one exothermic peak at 105 degrees C during the heating process. The spore coat separated from the native spores also showed a peak at 56 degrees C on its heating thermogram. The peak at 56 degrees C was reversible for both native spores and the spore coat. It was suggested that this peak at 56 degrees C might be related to the heat-activation process that takes place in the spore-coat region. It seems that the peak is due to the denaturation or the structural change of the spore-coat protein that might facilitate either the permeation of germination stimulators or the release of some germination inhibitor into or out of the spores.  相似文献   

9.
The stability of the two isoforms of poplar plastocyanin (PCa and PCb) was studied with differential scanning calorimetry (DSC) technique. It was shown that the thermal unfolding of both isoforms is an irreversible process with two endothermic and one exothermic peaks. The melting temperature of PCb was found to be 1.3+/-0.2 K degrees higher than of PCa, which indicates that PCb is more stable. The enthalpy of unfolding was estimated from the heat capacity curves and was found to be significantly higher for PCb at salt concentration I=0.1 M. In addition, PCb unfolding enthalpy and melting temperature are much more sensitive to the changes in the salt concentration as found in the experiments done at different ionic strength. The experiments were complemented with numerical calculations. The salt effect on the stability was modeled using the X-ray structure of PCa and a homology modeled structure of PCb. It was found, in agreement with the experimental data, that the stability of PCb changes by 4.7 kJ more than PCa, as the salt concentration increases from zero to 0.1 M. Thus, the differences in only 12 amino acid positions between "a" and "b" isoforms result in a measurable difference in the folding enthalpy and a significant difference in the salt dependence. The optimization of the electrostatic energies of PCa and PCb were studied and it was shown that PCb is better electrostatically optimized.  相似文献   

10.
Xia K  Zhang S  Bathrick B  Liu S  Garcia Y  Colón W 《Biochemistry》2012,51(1):100-107
Globular proteins are usually in equilibrium with unfolded conformations, whereas kinetically stable proteins (KSPs) are conformationally trapped by their high unfolding transition state energy. Kinetic stability (KS) could allow proteins to maintain their activity under harsh conditions, increase a protein's half-life, or protect against misfolding-aggregation. Here we show the development of a simple method for quantifying a protein's KS that involves incubating a protein in SDS at high temperature as a function of time, running the unheated samples on SDS-PAGE, and quantifying the bands to determine the time-dependent loss of a protein's SDS resistance. Six diverse proteins, including two monomer, two dimers, and two tetramers, were studied by this method, and the kinetics of the loss of SDS resistance correlated linearly with their unfolding rate determined by circular dichroism. These results imply that the mechanism by which SDS denatures proteins involves conformational trapping, with a trapping rate that is determined and limited by the rate of protein unfolding. We applied the SDS trapping of proteins (S-TraP) method to superoxide dismutase (SOD) and transthyretin (TTR), which are highly KSPs with native unfolding rates that are difficult to measure by conventional spectroscopic methods. A combination of S-TraP experiments between 75 and 90 °C combined with Eyring plot analysis yielded an unfolding half-life of 70 ± 37 and 18 ± 6 days at 37 °C for SOD and TTR, respectively. The S-TraP method shown here is extremely accessible, sample-efficient, cost-effective, compatible with impure or complex samples, and will be useful for exploring the biological and pathological roles of kinetic stability.  相似文献   

11.
The novel thermostable carboxylesterase EstGtA2 from G. thermodenitrificans (accession no. AEN92268) was functionally expressed and purified using an N-terminal fusion tag peptide. We recently reported general properties of the recombinant enzyme. Here we report preliminary data on thermal stability of EstGtA2 and of its tagged form. Conformational stability was investigated using circular dichroism and correlated with residual activity measurements using a colorimetric assay. The tag peptide had no considerable impact on the apparent melting temperature: T(m) value = 64.8°C (tagged) and 65.7°C (cleaved) at pH 8. After thermal unfolding, the tag-free enzyme rapidly recovered initial activity at 25°C (1.2 Umg(-1)), which was corroborated by substantial refolding (83%) as determined by far-UV CD transitions. However, after thermal unfolding, the purification tag drastically decreased specific activity at 25°C (0.07 Umg(-1)). This was corroborated by the absence of refolding transition. Although the purification tag has no undesirable impact on activity before thermal unfolding as well as on Tm, it drastically hinders EstGtA2 refolding resulting in a major loss of thermal stability.  相似文献   

12.
The stability of a paper-immobilized antibody was investigated over a range of temperatures (40-140 °C) and relative humidities (RH, 30-90%) using both unmodified filter paper and the same paper impregnated with polyamide-epichlorohydrin (PAE) as supports. Antibody stability decreased with increasing temperature, as expected, but also decreased with increasing RH. At 40 °C, the half-life was more than 10 days, with little dependence on RH. However, at 80 °C, the half-life varied from ~3 days at low RH to less than half an hour at 90% RH, demonstrating that hydration of the antibody promotes unfolding. Antibody stability was not influenced by the PAE paper surface treatment. This work shows that antibodies are good candidates for development of bioactive paper as they have sufficient stability at high temperature to withstand printing and other roll-to-roll processing steps, and sufficient low temperature stability to allow long-term storage of bioactive paper materials.  相似文献   

13.
The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52 degrees C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures.  相似文献   

14.
The thermal unfolding of xylanase A from Streptomyces lividans, and of its isolated substrate binding and catalytic domains, was studied by differential scanning calorimetry and Fourier transform infrared and circular dichroism spectroscopy. Our calorimetric studies show that the thermal denaturation of the intact enzyme is a complex process consisting of two endothermic events centered near 57 and 64 degrees C and an exothermic event centered near 75 degrees C, all of which overlap slightly on the temperature scale. A comparison of the data obtained with the intact enzyme and isolated substrate binding and catalytic domains indicate that the lower- and higher-temperature endothermic events are attributable to the thermal unfolding of the xylan binding and catalytic domains, respectively, whereas the higher-temperature exothermic event arises from the aggregation and precipitation of the denatured catalytic domain. Moreover, the thermal unfolding of the two domains of the native enzyme are thermodynamically independent and differentially sensitive to pH. The unfolding of the substrate binding domain is a reversible two-state process and, under appropriate conditions, the refolding of this domain to its native conformation can occur. In contrast, the unfolding of the catalytic domain is a more complex process in which two subdomains unfold independently over a similar temperature range. Also, the unfolding of the catalytic domain leads to aggregation and precipitation, which effectively precludes the refolding of the protein to its native conformation. These observations are compatible with the results of our spectroscopic studies, which show that the catalytic and substrate binding domains of the enzyme are structurally dissimilar and that their native conformations are unaffected by their association in the intact enzyme. Thus, the calorimetric and spectroscopic data demonstrate that the S. lividans xylanase A consists of structurally dissimilar catalytic and substrate binding domains that, although covalently linked, undergo essentially independent thermal denaturation. These observations provide valuable new insights into the structure and thermal stability of this enzyme and should assist our efforts at engineering xylanases that are more thermally robust and otherwise better suited for industrial applications.  相似文献   

15.
The stability of several protein systems of interest has been shown to have a kinetic basis. Besides the obvious biotechnological implications, the general interest of understanding protein kinetic stability is emphasized by the fact that some emerging molecular approaches to the inhibition of amyloidogenesis focus on the increase of the kinetic stability of protein native states. Lipases are among the most important industrial enzymes. Here, we have studied the thermal denaturation of the wild-type form, four single-mutant variants and two highly stable, multiple-mutant variants of lipase from Thermomyces lanuginosa. In all cases, thermal denaturation was irreversible, kinetically controlled and conformed to the two-state irreversible model. This result supports that the novel molecular-dynamics-focused, directed-evolution approach involved in the preparation of the highly stable variants is successful likely because it addresses kinetic stability and, in particular, because heated molecular dynamics simulations possibly identify regions of disrupted native interactions in the transition state for irreversible denaturation. Furthermore, we find very large mutation effects on activation enthalpy and entropy, which were not accompanied by similarly large changes in kinetic urea m-value. From this we are led to conclude that these mutation effects are associated to some structural feature of the transition state for the irreversible denaturation process that is not linked to large changes in solvent accessibility. Recent computational studies have suggested the existence of solvation/desolvation barriers in at least some protein folding/unfolding processes. We thus propose that a solvation barrier (arising from the asynchrony between breaking of internal contacts and water penetration) may contribute to the kinetic stability of lipase from T. lanuginosa (and, possibly, to the kinetic stability of other proteins as well).  相似文献   

16.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   

17.
Protein self-association and protein unfolding are two temperature-dependent processes whose understanding is of utmost importance for the development of biological pharmaceuticals because protein association may stabilize or destabilize protein structure and function. Here we present new theoretical and experimental methods for analyzing the thermodynamics of self-association and unfolding. We used isothermal dilution calorimetry and analytical ultracentrifugation to measure protein self-association and introduced binding partition functions to analyze the cooperative association equilibria. In a second type of experiment, we monitored thermal protein unfolding with differential scanning calorimetry and circular dichroism spectroscopy and used the Zimm?Bragg theory to analyze the unfolding process. For α-helical proteins, the cooperative Zimm?Bragg theory appears to be a powerful alternative to the classical two-state model. As a model protein, we chose highly purified human recombinant apolipoprotein A-I. Self-association of Apo A-I showed a maximum at 21 °C with an association constant Ka of 5.6 × 10(5) M(?1), a cooperativity parameter σ of 0.003, and a maximal association number n of 8. The association enthalpy was linearly dependent on temperature and changed from endothermic at low temperatures to exothermic above 21 °C with a molar heat capacity ΔC(p)° of ?2.76 kJ mol(?1) K(?1). Above 45 °C, the association could no longer be measured because of the onset of unfolding. Unfolding occurred between 45 and 65 °C and was reversible and independent of protein concentration up to 160 μM. The midpoint of unfolding (T(0)) as measured by DSC was 52?53 °C; the enthalpy of unfolding (ΔH(N)(U)) was 420 kJ/mol. The molar heat capacity (Δ(N)(U)C(p)) increased by 5.0 ± 0.5 kJ mol(?1) K(?1) upon unfolding corresponding to a loss of 80?85 helical segments, which was confirmed by circular dichroism spectroscopy. Unfolding was highly cooperative with a nucleation parameter σ of 4.4 × 10(?5).  相似文献   

18.
Nitrite reductase (NiR) is a multicopper protein, with a trimeric structure containing two types of copper site: type 1 is present in each subunit whereas type 2 is localized at the subunits interface. The paper reports on the thermal behaviour of wild type NiR from Alcaligenes faecalis S-6. The temperature-induced changes of the copper centres are characterized by optical spectroscopy and electron paramagnetic resonance spectroscopy, and by establishing the thermal stability by differential scanning calorimetry. The calorimetric profile of the enzyme shows a single endothermic peak with maximum heat absorption at Tm  100 °C, revealing an exceptional thermal stability. The thermal transition is irreversible and the scan rate dependence of the calorimetric trace indicates that the denaturation of NiR is kinetically controlled. The divergence of the activation energy values determined by different methods is used as a criterion for the inapplicability of the one-step irreversible model. The best fit of the DSC profiles is obtained when the classical Lumry–Eyring model, N ? U ? F, is considered. The simulation results indicate that the irreversible step prevails on the reversible one. Moreover, it is found that the conformational changes within the type-1 copper environments precede the denaturation of the whole protein. No evidence of protein dissociation within the temperature range investigated was observed.  相似文献   

19.
The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native alpha-helix to a beta-sheet, contrary to the beta-sheet to alpha-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of beta-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.  相似文献   

20.
The possible structure of lipophorin in insect blood (hemolymph) was investigated by differential scanning calorimetry (DSC) and 13C nuclear magnetic relaxation studies. The DSC heating curves of intact lipophorins showed endothermic peaks between -3 and 40 degrees C for lipophorins which contain hydrocarbons, whereas no such peaks were observed for lipophorins which do not contain this lipid. Hydrocarbon fractions isolated from the lipophorins showed endothermic peaks similar to those obtained from intact lipophorin in terms of the transition temperatures, the shapes, and the enthalpy changes. 13C spin lattice relaxation times of the (CH2)n resonance of hydrocarbons of intact lipophorin were measured as a function of temperature and revealed that the motions of hydrocarbon chains changed coincidentally with the onset and offset of phase transition. These data suggest the presence of a hydrocarbon-rich region within the lipophorin particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号