首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.  相似文献   

2.
3.
Isolation of Ku70-binding proteins (KUBs)   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

4.
The partitioning-defective 3 (Par3),a key component in the conserved Par3/Par6/aPKC complex,plays fundamentalroles in cell polarity.Herein we report the identification of Ku70 and Ku80 as novel Par3-interacting proteins throughan in vitro binding assay followed by liquid chromatography-tandem mass spectrometry.Ku70/Ku80 proteins are twokey regulatory subunits of the DNA-dependent protein kinase (DNA-PK),which plays an essential role in repairingdouble-strand DNA breaks (DSBs).We determined that the nuclear association of Par3 with Ku70/KuS0 was enhancedby y-irradiation (IR),a potent DSB inducer.Furthermore,DNA-PKcs,the catalytic subunit of DNA-PK,interacted withthe Par3/Ku70/Ku80 complex in response to IR.Par3 over-expression or knockdown was capable of up-or downregulat-ing DNA-PK activity,respectively.Moreover,the Par3 knockdown cells were found to be defective in random plasmidintegration,defective in DSB repair following IR,and radiosensitive,phenotypes similar to that of Ku70 knockdowncells.These findings identify Par3 as a novel component of the DNA-PK complex and implicate an unexpected link ofcell polarity to DSB repair.  相似文献   

5.
High titer autoantibodies to the Ku Ag, a DNA-protein complex containing 70- and approximately 80-kDa protein subunits (p70 and p80, respectively), are found in sera of certain patients with systemic lupus erythematosus and related disorders. Autoepitopes of the Ku Ag were identified and partially characterized by expressing fragments of the p70 and p80 cDNA as fusion proteins in bacteria. Systemic lupus erythematosus sera reacted on immunoblots with at least three epitopes of p70 (amino acids 560-609, 506-535, and 115-467), and three epitopes of p80 (amino acids 682-732, 558-681, and 1-374). These six antigenic regions had distinct amino acid sequences, and were also immunologically distinct, as determined by using immunoaffinity-purified auto-antibodies to particular epitopes. Detailed mapping of the strongly antigenic region near the C terminus of p70 revealed a complex conformational or discontinuous epitope, the antigenicity of which was abolished by deleting either amino acids 560-571 or 601-609. The C terminus of p80 may also contain a discontinuous or conformational epitope(s). Although only some sera reacted with p70 or p80 on immunoblots, all sera that immunoprecipitated the native Ku complex reacted with native Ku by ELISA, and inhibited the binding of mAb directed at epitopes of native Ku. Taken together, these studies indicate that anti-Ku autoantibodies target a diversity of independent epitopes located on p70, p80, and the intact Ku complex, and that a significant portion of the autoantibodies in most patients' sera is directed against conformational/discontinuous epitopes.  相似文献   

6.
Cell death linked to oxidative DNA damage has been implicated in acute pancreatitis. The severe DNA damage, which is beyond the capacity of the DNA repair proteins, triggers apoptosis. It has been hypothesized that oxidative stress may induce a decrease in the Ku70 and Ku80 levels and apoptosis in pancreatic acinar cells. In this study, it was found that oxidative stress caused by glucose oxidase (GO) acting on beta-d-glucose, glucose/glucose oxidase (G/GO), induced slight changes in cytoplasmic Ku70 and Ku80 but drastically induced a decrease in nuclear Ku70 and Ku80 both time- and concentration-dependently in AR42J cells. G/GO induced apoptosis determined by poly(ADP-ribose) polymerase cleavage, an increase in expression of p53 and Bax, and a decrease in Bcl-2 expression. G/GO-induced apoptosis was in parallel with the loss of nuclear Ku proteins in AR42J cells. Caspase-3 inhibitor prevented G/GO-induced nuclear Ku loss and cell death. G/GO did not induce apoptosis in the cells transfected with either the Ku70 or Ku80 expression gene but increased apoptosis in those transfected with the Ku dominant negative mutant. Pulse and pulse-chase results show that G/GO induced Ku70 and Ku80 syntheses, even though Ku70 and Ku80 were degraded both in cytoplasm and nucleus. G/GO-induced decrease in Ku binding to importin alpha and importin beta reflects possible modification of nuclear import of Ku proteins. The importin beta level was not changed by G/GO. These results demonstrate that nuclear decrease in Ku70 and Ku80 may result from the decrease in Ku binding to nuclear transporter importins and the degradation of Ku proteins. The nuclear loss of Ku proteins may underlie the mechanism of apoptosis in pancreatic acinar cells after oxidative stress.  相似文献   

7.
8.
9.
One of the most abundant lesions in DNA is the abasic (AP) sites arising spontaneously or as an intermediate in base excision repair. Certain proteins participating in the processing of these lesions form a Schiff base with the deoxyribose of the AP site. This intermediate can be stabilized by NaBH(4) treatment. By this method, DNA duplexes with AP sites were used to trap proteins in cell extracts. In HeLa cell extract, along with a prevalent trap product with an apparent molecular mass of 95 kDa, less intensive low-molecular-weight products were observed. The major one was identified as the p80-subunit of Ku antigen (Ku). Ku antigen, a DNA binding component of DNA-dependent protein kinase (DNA-PK), participates in double-stranded break repair and is responsible for the resistance of cells to ionizing radiation. The specificity of Ku interaction with AP sites was proven by more efficient competition of DNA duplexes with an analogue of abasic site than non-AP DNA. Ku80 was cross-linked to AP DNAs with different efficiencies depending on the size and position of strand interruptions opposite to AP sites. Ku antigen as a part of DNA-PK was shown to inhibit AP site cleavage by apurinic/apyrimidinic endonuclease 1.  相似文献   

10.
Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis progression to cirrhosis to HCC. We identified a panel of four serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.  相似文献   

11.
12.
13.

Background  

DNA double-strand breaks (DSBs) can occur in response to ionizing radiation (IR), radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ). Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku.  相似文献   

14.
Ku proteins play an important role in DNA double-strand break (DSB) repair, chromosome maintenance, and growth regulation. To understand the fundamental characteristics of Ku proteins, we examined the electrophoretic mobility and expression of hamster Ku70 and Ku80 and determined the chromosome locations of their genes. The electrophoretic mobility of hamster Ku proteins are different from that of human Ku proteins. No significant changes in the quantity of Ku proteins were observed in CHO-K1 cells treated with 10 Gy of ionizing radiation, suggesting that both proteins are expressed constitutively in amounts adequate to repair DNA DSBs. The chromosome locations of the Ku genes were determined by direct R-banding fluorescence in situ hybridization. The Ku70 gene was localized to Syrian hamster chromosome 4qa4.1--> qa4.2 and Chinese hamster chromosome 2p3.1, and the Ku80 gene was localized to Syrian hamster chromosome 4qb5--> qb6.1 and Chinese hamster chromosome 2p3.5-->p3.6. These results provide clues to the biological functions of Ku, as well as useful information for constructing comparative chromosome maps between hamsters and other mammalian species, including human, mouse, and rat.  相似文献   

15.
16.
Polyglutamine (polyQ) diseases, such as Huntington's disease and Machado-Joseph disease (MJD), are caused by gain of toxic function of abnormally expanded polyQ tracts. Here, we show that expanded polyQ of ataxin-3 (Q79C), a gene that causes MJD, stimulates Ku70 acetylation, which in turn dissociates the proapoptotic protein Bax from Ku70, thereby promoting Bax activation and subsequent cell death. The Q79C-induced cell death was significantly blocked by Ku70 or Bax-inhibiting peptides (BIPs) designed from Ku70. Furthermore, expression of SIRT1 deacetylase and the addition of a SIRT1 agonist, resveratrol, reduced Q79C toxicity. In contrast, mimicking acetylation of Ku70 abolished the ability of Ku70 to suppress Q79C toxicity. These results indicate that Bax and Ku70 acetylation play important roles in Q79C-induced cell death, and that BIP may be useful in the development of therapeutics for polyQ diseases.  相似文献   

17.
INTRODUCTION: Serum alpha-fetoprotein (AFP) is a useful marker of hepatocellular carcinoma (HCC), although the serum AFP concentration is also increased in patients with chronic liver diseases (CLD). The analysis of AFP glycoforms has been known to be of diagnostic value. We applied the lectin-affinity electrophoresis and antibody-affinity blotting techniques to HCC patients in Vietnam in order to better understand the role of lentil lectin-affinity AFP-L3 in the diagnosis and differential diagnosis of HCC, and its relationship with the biological characteristics of HCC. METHODS: Lens culinaris agglutinin-reactive AFP (AFP-L3) was measured in 65 patients with histologically proven HCC and 25 patients with CLD. All patients had serum AFP levels above 54 ng/mL. AFP-L3 levels were determined by lectin affinity electrophoresis coupled with antibody-affinity blotting. The diagnosis of HCC was confirmed histologically by ultrasound-guided biopsy. RESULTS: The mean value of AFP-L3 in the HCC patients was 49.6 +/- 21.6%, which was significantly higher (p<0.001) than that in the 25 CLD patients (10.7 +/- 4.3%). When the cutoff level for AFP-L3 was set at 15% (mean +/- SD), the sensitivity was 96.9%, the specificity 92.0% and the accuracy 95.5% in the 65 HCC patients. There was no clear correlation between serum AFP level and AFP-L3 percentage (r=0.16). There was no correlation between AFP-L3 and the maximum diameter of HCC nodules (r=0.05). However, the mean AFP-L3 value was higher in moderately or poorly differentiated HCC than in well differentiated tumors (p<0.001). CONCLUSIONS: AFP-L3 is potentially a clinically useful marker for the differentiation of increased AFP levels in hepatocellular carcinoma and chronic liver diseases. The AFP-L3 percentage is closely related to HCC differentiation. We consider the analysis of AFP-L3 a useful adjunct in the diagnosis of HCC.  相似文献   

18.
A central region of Ku80 mediates interaction with Ku70 in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.  相似文献   

19.
DNA-PKcs is a large (approximately 470 kDa) kinase that plays an essential role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). DNA-PKcs is recruited to DSBs by the Ku70/Ku80 heterodimer, with which it forms the core of a multiprotein complex that promotes synapsis of the broken DNA ends. We have purified the human DNA-PKcs/Ku70/Ku80 holoenzyme assembled on a DNA molecule. Its three-dimensional (3D) structure at approximately 25 Angstroms resolution was determined by single-particle electron microscopy. Binding of Ku and DNA elicits conformational changes in the FAT and FATC domains of DNA-PKcs. Dimeric particles are observed in which two DNA-PKcs/Ku70/Ku80 holoenzymes interact through the N-terminal HEAT repeats. The proximity of the dimer contacts to the likely positions of the DNA ends suggests that these represent synaptic complexes that maintain broken DNA ends in proximity and provide a platform for access of the various enzymes required for end processing and ligation.  相似文献   

20.
The Ku protein is a heterodimer composed of 70 kD (Ku70) and 80 kD (Ku80) subunits. Ku is the regulatory component of the DNA-dependent protein kinase (DNA-PK) that has a catalytic subunit of ~460 kD (DNA-PKcs). In this study, the two polypeptides (Ku80/Ku70) of the human Ku were expressed in Xenopus oocytes in order to investigate their over-expression, sub-cellular localization, and functional interaction with the Xenopus DNA-PKcs. In vitro-transcribed mRNAs for Ku70 and Ku80 were obtained from the respective plasmid constructs. The exogenously expressed proteins from the injected mRNAs were immunoprecipitated using a specific anti-T7 Tag antibody. The T7 Tag epitope is present in the vector at the amino-terminus and is in-frame with the Ku cDNA sequences. While injected Ku70 mRNA translated to a full-length Ku70 polypeptide that translocated to the nucleus, injected Ku80 mRNA resulted in the expression of a truncated product that was retained in the cytoplasm. Although Ku80 mRNA was stable for a period of 18 h in the oocytes post-microinjection, the protein was only stabilized when co-expressed with Ku70, suggesting that Ku80 is susceptible to proteolytic degradation when not dimerized with Ku70. Furthermore, the immunocomplex was capable of phosphorylating the DNA-PK-specific substrate thereby indicating that the holoenzyme could functionally reconstitute in vivo in the oocytes by heterologous subunits thus demonstrating evolutionary conservation of the enzyme subunit structure and function among diverse species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号