首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex.  相似文献   

2.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

3.
The regulation of ovarian steroidogenesis in vitro by coho salmon FSH and LH was investigated in intact coho salmon follicles and isolated follicular layers at various stages of oocyte maturation, from late vitellogenesis until the completion of germinal vesicle breakdown (GVBD). In granulosa layers from all stages, LH, but not FSH, stimulated 17alpha,20beta-dihydroxy-4-pregnen-3-one (17, 20beta-P) production. In theca-interstitial layers from all stages, FSH and LH stimulated steroid production, LH being more potent than FSH. The basal steroid output of intact follicles was significantly lower than that of isolated follicular layers, and their response to FSH and LH also differed. First, the intact follicles produced 17alpha-hydroxyprogesterone in response to FSH during the central germinal vesicle stage while theca-interstitial layers did not. Second, estradiol-17beta production was not inhibited by LH during final oocyte maturation in intact follicles, as observed for granulosa layers. Our results indicate that LH is the determining factor regulating the production of the maturation-inducing steroid, 17,20beta-P, and the induction of GVBD in the salmonid ovary. In summary, we have provided evidence for maturation-associated changes in the effects of FSH and LH in the salmonid ovary, which further supports the hypothesis that FSH and LH have distinct functions in the teleost ovary.  相似文献   

4.
The objective was to compare ovarian steroids and expression of mRNAs encoding cytochrome P450 side-chain cleavage, cytochrome P450 17 alpha-hydroxylase, cytochrome P450 aromatase, 3 beta-hydroxysteroid dehydrogenase Delta(4),Delta(5) isomerase, LH, and FSH receptors and estrogen receptor-beta in ovaries of cows with dominant and nondominant ovarian follicular cysts and in normal dominant follicles. Estradiol-17 beta, progesterone, and androstenedione concentrations were determined in follicular fluid using specific RIAs. Dominant cysts were larger than young cysts or dominant follicles, whereas nondominant cysts were intermediate. Estradiol-17 beta (ng/ml) and total steroids (ng/follicle) were higher in dominant cysts than in dominant follicles. Expression of LH receptor and 3 beta-hydroxysteroid dehydrogenase mRNAs was higher in granulosa cells of dominant cysts than in dominant follicles. Nondominant cysts had higher follicular concentrations of progesterone, lower estradiol-17 beta concentrations, and lower expression of steroidogenic enzyme, gonadotropin receptor, and estrogen receptor-beta mRNAs than other groups. In summary, increased expression of LH receptor and 3 beta-hydroxysteroid dehydrogenase mRNAs in granulosa and increased follicular estradiol-17 beta concentrations were associated with dominant cysts compared to dominant follicles. Study of cysts at known developmental stages is useful in identifying alterations in follicular steroidogenesis.  相似文献   

5.
Compared with other domestic animals, relatively little is known about the changes in, and temporal relations between, reproductive hormones around the time of ovulation in the domestic bitch. Therefore, plasma concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol-17beta, progesterone, prolactin (PRL), and alpha-melanocyte-stimulating hormone (alpha-MSH) were determined one to six times daily from the start of the follicular phase until 5 days after the estimated day of ovulation in six Beagle bitches. In all bitches, the pre-ovulatory LH surge was accompanied by a pre-ovulatory FSH surge. A pre-ovulatory PRL or alpha-MSH surge was not observed. The pre-ovulatory FSH and LH surges started concomitantly in four bitches, but in two bitches the FSH surge started 12 h earlier than the LH surge. The FSH surge (110+/-8 h) lasted significantly longer than the LH surge (36+/-5 h). In contrast with the pre-ovulatory FSH surge, the pre-ovulatory LH surge was bifurcated in four of six bitches. The mean plasma LH concentrations before (1.9+/-0.4 microg/L) and after (1.9+/-0.3 microg/L) the LH surge were similar, but the mean plasma FSH concentration before the FSH surge (1.6+/-0.3 U/L) was significantly lower than that after the FSH surge (3.1+/-0.2 U/L). In most bitches the highest plasma estradiol-17beta concentration coincided with or followed the start of the pre-ovulatory LH surge. In five of the six bitches the plasma progesterone concentration started to rise just before or concurrently with the start of the LH surge. In conclusion, the results of this study provide evidence for the differential regulation of the secretion of LH and FSH in the bitch. In addition, the interrelationship of the plasma profiles of estradiol-17beta and LH suggests a positive feedback effect of estradiol-17beta on LH surge release. The start of the pre-ovulatory LH surge is associated with an increase in the plasma progesterone concentration in this species.  相似文献   

6.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations.  相似文献   

7.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

8.
Hamster ovarian follicles at Stages 1 to 10 (Stages 1-4: follicles with 1-4 layers of granulosa cells (GC); Stages 5-7: 5-10 layers GC plus theca; Stages 8-10: antral follicles) were isolated on the morning of proestrus or estrus and incubated for 2 h in the absence or presence of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (Prl), progesterone (P4), 17 alpha-hydroxyprogesterone (17OHP), or androstenedione (A). Steroid accumulations in the media were measured by radioimmunoassay (RIA). On proestrus, without any hormonal stimulus, consistent accumulation of P4 through estradiol-17 beta (E2) occurred in low amounts only from Stage 6 and on; both FSH (5-25 ng) and LH (1-25 ng) significantly stimulated steroidogenesis by Stage 6-10 follicles, and the effects of FSH, except for Stage 10, were largely attributable to LH contamination. However, 25 ng FSH significantly stimulated A production by Stages 1-4, whereas 1-25 ng LH was ineffective. On estrus, follicles at all stages, especially 1-6, showed significant and dose-dependent increases in P4 production in response to FSH; both FSH and LH significantly stimulated P4 and 17OHP accumulation from Stage 5 onwards; however, there was no increase in A and E2 compared to controls. Even the smallest estrous follicles showed a shift to predominance of P4 accumulation. On proestrus, Prl had a negative influence on LH-induced accumulation of P4 and 17OHP by Stages 7-9 and 6-8, respectively, without affecting A or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The present study investigated the effects of exposure of neonatal female rats to p-tert-octylphenol (OP) on estrogen-induced afternoon surges of LH, FSH, and prolactin (PRL) secretion, and on sexual behavior in adulthood. After birth, one group of female Wistar rat pups received s.c. injections of OP (100 mg/kg body weight [BW]; OP group) dissolved in DMSO, while the control group received DMSO only (DMSO group). In order to make a qualitative comparison, a third group was injected with estradiol-17beta (500 microg/kg BW; estradiol group) dissolved in DMSO. Injections were given on Days 1, 3, 5, 7, 9, 11, 13, and 15 of age. The rats from the OP and estradiol groups that were used for subsequent experiments were in persistent vaginal estrus. Spontaneous LH surge measured at Postnatal Days (PND) 78-81 was observed only in the DMSO group on the afternoon of the day of proestrus. At PND 115, randomly selected rats from each of three treatment groups were bilaterally ovariectomized (ovx), and 8 days later, Silastic capsules containing estradiol-17beta were implanted under the skin. Estrogen implants stimulated afternoon surges of LH, FSH, and PRL for two consecutive days in the DMSO group, but not in the OP and estradiol groups. Rats from the OP and DMSO groups underwent ovx at PND 186, and 6 days later they were treated with a combination of estradiol benzoate s.c. (15 microg/kg BW) and progesterone s.c. (2 mg/kg BW) to test the lordosis reflex. In response to this hormone treatment and mounting stimulus delivered by the stud male rats, the OP-treated rats were less receptive compared with control DMSO-treated rats, and thus the lordosis quotient and lordosis rating were significantly (P < 0.05) reduced in the OP group compared with the DMSO group. Analysis of the area of the sexually dimorphic nucleus of the preoptic area of the brain revealed that the area of this nucleus was larger in the OP group than it was in control DMSO rats. We conclude that the exposure of neonatal female rats to higher doses of OP disrupts the cyclic release of LH, FSH, and PRL, and interferes with the display of sexual receptive behavior in adulthood.  相似文献   

10.
Effect of estradiol supplementation on superovulation in Swamp buffalo   总被引:1,自引:0,他引:1  
The effect of estradiol-17beta (E(2)) supplementation on superovulation with (PMSG) or (FSH) was investigated in Swamp buffalo. Sixty-eight buffalo were treated in seven groups. Group 1 served as control and was superovulated by standard PMSG or FSH treatment used in routine bovine embryo transfer protocols. Group 2 was superovulated by standard PMSG regimen plus two injections of E(2) at a 48 h interval beginning one day before the onset of gonadotropin treatment (short-term supplementation) for a total dosage of 2.5 mg E(2); Groups 3 and 4 received the same regimen as Group 2, but in doses of 5.0 and 7.5 mg E(2), respectively. Group 5 received the standard FSH regimen (40% LH). Group 6 received short-term E(2) (7.5 mg) supplementation of FSH-p. Group 7 was superovulated by standard FSH regimen (40% LH) plus three injections of E(2) at 48-72 h intervals beginning five days before the onset of gonadotropin treatment (long-term supplementation) for a total dosage of 7.5 mg E(2). The number of corpora lutea (CL) and follicles >/= 8 mm in diameter were recorded by palpation per rectum and after slaughter. The mean numbers of CL and follicles were 0.99, 5.8, 8.0, 10.6, 4.0, 3.9, 8.1 and 0.25, 6.8, 6.2, 6.2, 1.6, 0.0, 4.1 for Groups 1, 2, 3, 4, 5, 6, 7, respectively. In Group 7, the rates of nonsurgical and postmortem embryo recovery were 46 and 90.4%, respectively and 54.4% of the collected ova were fertilized. These results indicate the possibility of producing viable embryos in buffalo by using E(2) supplementation for the gonadotropin treatment.  相似文献   

11.
肖赛  肖碧莲 《生理学报》1989,41(1):97-101
本文测定了24例正常月经妇女在不同时相、不同大小卵泡的卵泡液中雌二醇(E_2)、孕酮(P_0)、雄烯二酮(A)、睾酮(T)、卵泡刺激素(FSH)、黄体生成素(LH)和催乳素(PRL)的含量,并分析其与外周血中相应激素浓度的关系。测定结果显示:小卵泡的卵泡液中E_2、Po,FSH,LH水平低于大卵泡中水平,而A和T水平则相反。排卵前大卵泡中E_2(9815nmol/L),P_0(3316nmol/L),FSH(1.34IU/L)和LH(3.9lIU/L)达最高值。A(280nmol/L)和T(137nmol/L)却较小卵泡中水平低(相应为692nmol/L和176nmol/L)。PRL水平在大小卵泡中无显著性差异。卵泡液中甾体激素水平高于外周血7—20.000倍,FSH、LH水平为外周血的10—80%,PRL水平为60%—3倍。  相似文献   

12.
Serum luteinizing hormone (LH) concentrations were measured at 4, 6, 8 and 10 mo of age in estradiol-17beta (E(2))-treated (n = 4) and contemporary control steers (n = 4). Serum LH was measured in samples collected at 30-min intervals starting at 0600 h for 12 h and for an additional 6 h following luteinizing hormone-releasing hormone (LHRH) injection. Estradiol-17beta suppressed mean serum LH concentrations at all ages (P<0.01), but it suppressed pulsatile release of LH only at 4 and 6 mo (P<0.01), not 8 and 10 mo of age. Luteinizing hormone release in response to LHRH, expressed as the area under the secretory curve, was larger and LH concentrations returned to pre-LHRH levels later in E(2)-treated steers (P<0.01). Peak LH concentrations after LHRH varied with age (P<0.05) but not E(2) treatment. These results suggest that E(2) suppression of LH in steers occurs at the hypothalamic level and developmental changes take place within the hypothalamicpituitary axis in absence of androgen feedback from the testis.  相似文献   

13.
An experiment was conducted using 16 cyclic, Welsh Mountain ewes during the luteal phase of the estrous cycle to determine the effect of a 5-day period of feeding a high-energy high-protein diet (lupin grain; 500 g/day) on folliculogenesis and on the plasma concentrations of glucose, insulin, follicle stimulating hormone (FSH) and estradiol-17beta, and on the follicular fluid concentrations of glucose, inhibin A, estradiol-17beta, androstenedione and progesterone. Average weight did not differ between lupin-fed and control groups during the experiment. There was a trend for the number of small and large follicles to increase in the lupin-fed group. The plasma concentrations of glucose (P=0.012) and insulin (P=0.007) were higher during the feeding period in lupin-fed ewes. The plasma concentrations of FSH and estradiol-17beta were not significantly different. The mean follicular fluid concentration of glucose (small follicles; <3.5 mm) from lupin-fed ewes was elevated (P=0.010) and progesterone lowered (P=0.034) compared to controls. The follicular fluid concentrations of estradiol-17beta, androstenedione and inhibin A were not significantly different. The follicular fluid concentration of estradiol-17beta was positively correlated with androstenedione (r=-0.241; P=0.001) and inhibin A (r=0.734; P< or =0.001) and glucose was negatively correlated with inhibin (r=-0.241; P=0.01), but not estradiol (r=0.075; P=0.410) or androstenedione (r=0.050; P=0.564). The lupin grain supplement increased the number of follicles as expected, but this increase was not significant. These changes were reflected in follicular fluid where lupin feeding increased the concentration of glucose and decreased the concentration of progesterone in follicles less than 3.5mm in diameter. These data suggest that the local ovarian actions of nutrients have a role in the mediation of nutritional influences on folliculogenesis.  相似文献   

14.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

15.
Eleven heifers, between 63 and 197 days of age, were exposed to 18 hr light/day (L) or natural photoperiods (N), beginning October 19, 1979. They were ovariectomized 8 weeks later. LH concentrations after ovariectomy were not affected by photoperiod, but the rate of increase of FSH after ovariectomy was greater (P<0.10) for group L than for group N. Three weeks after ovariectomy, heiters were injected, IV, with 0.1 mug/kg estradiol-17beta. LH concentrations initially decreased after injection. This was followed by a series of pulses larger than those prior to injection. FSH concentrations declined after injection and remained low throughout the sampling period. The net response of LH concentrations to estradiol (mean post-injection concentration minus mean pre-injection concentration) was greater (P=0.05) for group L (4.7 +/- 0.49 ng/ml) than for group N (2.9 +/- 0.37 ng/ml). Photoperiod did not affect the net response of FSH concentrations to estradiol. We concluded that exposing prepubertal heifers to 18 hr light/day during the winter resulted in a greater rate of increase of FSH after ovariectomy and greater estrogen-induced LH release. Because the response of LH to estradiol-17beta differed from the response of FSH, these hormones may be regulated differently.  相似文献   

16.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

17.
Fertility is often lower in anestrous compared to cyclic ewes, after conventional estrus synchronization. We hypothesized that synchronization of ovarian follicular waves and ovulation could improve fertility at controlled breeding in anestrous ewes. Estradiol-17beta synchronizes follicular waves in cattle. The objectives of the present experiments were to study the effect of an estradiol injection, with or without a 12-d medroxyprogesterone acetate (MAP) sponge treatment, on synchronization of follicular waves and ovulation in anestrous ewes. Twenty ewes received sesame oil (n=8) or estradiol-17beta (350 microg; n=12). Eleven ewes received MAP sponges for 12d and were treated with oil (n=5) or estradiol-17beta (n=6) 6d before sponge removal. Saline (n=6) or eCG (n=6) was subsequently given to separate groups of ewes at sponge removal in the MAP/estradiol-17beta protocol. Estradiol treatment alone produced a peak in serum FSH concentrations (4.73+/-0.53 vs. 2.36+/-0.39 ng/mL for treatment vs. control; mean+/-S.E.M.) after a short-lived (6 h) suppression. Six of twelve ewes given estradiol missed a follicular wave around the time of estradiol injection. Medroxyprogesterone acetate-treated ewes given estradiol had more prolonged suppression of serum FSH concentrations (6-18 h) and a delay in the induced FSH peak (32.3+/-3.3 vs. 17.5+/-0.5 h). Wave emergence was delayed (5.7+/-0.3 vs. 1.4+/-0.7d from the time of estradiol injection), synchronized, and occurred at a predictable time (5-7 vs. 0-4d) compared to ewes given MAP alone. All ewes given eCG ovulated 3-4d after injection; this predictable time of ovulation may be efficacious for AI and embryo transfer.  相似文献   

18.
Changes in concentrations of bioactive and immunoreactive (ir-) inhibin, estradiol-17 beta, progesterone, LH, and FSH in peripheral blood were determined in cows induced to superovulate with eCG. The pattern of follicular growth was also characterized by daily ultrasonographic examination. Hormonal profiles and follicular development during the intact estrous cycle of the same animals before eCG treatment served as controls. Equine CG increased the number of follicles of various sizes (small, greater than or equal to 4 less than 7, medium, greater than or equal to 7 less than 10; large, greater than or equal to 10 mm in diameter) by 4 days after administration. The second growth of large follicles occurred within 1 day after superovulation. Inhibin bioactivity in jugular vein blood was detectable 48 h after eCG injection (44 h before LH peak), whereas it was not detected before administration of eCG or during control cycles. Circulating levels of bioactive inhibin further increased during the two waves of growth of large follicles. The highest activity of inhibin was noted at the time of the preovulatory LH peak (0 h). Thereafter, bioactivity of inhibin in peripheral plasma dropped from 0 to 24 h after the LH peak, and the activity increased again at 72 h compared to the value at -44 h. Plasma levels of ir-inhibin showed a pattern similar to changes in bioactive inhibin in the eCG-treated cows. Plasma concentrations of estradiol-17 beta also increased concomitantly with two waves of growth of large follicles. There was no correlation between plasma levels of progesterone and inhibin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of androgen pretreatment on follicle-stimulating hormone (FSH)-stimulated luteinizing hormone (LH) receptor induction in ovarian granulosa cells was examined. Immature female rats were treated with various doses (0.1-5 mg/rat) of testosterone (T), 5 alpha-dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol), or 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol). Subsequent follicular development was stimulated by treatment with ovine FSH. LH receptor induction in granulosa cells and ovulatory responses to 10 IU human chorionic gonadotropin (hCG) were examined. Since LH receptor induction requires the synergistic action of both FSH and estradiol, the effects of the androgen pretreatment on FSH-stimulated estradiol production were also examined. Dihydrotestosterone treatment at doses greater than 1 mg inhibited LH receptor induction by approximately 70%, which resulted in absent ovulatory responses. Treatment with 1 mg or more of T or 3 alpha-diol had no effect on LH receptor induction, yet the hCG-stimulated ovulation rate was reduced to 40% of that seen in vehicle-treated controls. 3 beta-Diol, at a dose of 1 mg/rat, did not affect LH receptor induction but did reduce hCG-stimulated ovulation responses. No significant effects of androgen treatment on ovarian or uterine weight or FSH-stimulated estradiol production were observed. These results suggest that androgens can act at multiple sites to inhibit ovarian follicular development and function. In addition these studies demonstrate that, although LH receptor induction is necessary, it may not be a sufficient condition to ensure ovulation of ovarian follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号