首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in enhanced biological phosphorus removal process. Two identical sequencing batch reactors (SBRs) were operated to compare phosphorus removal performance with granular sludge (R1) and flocculate activated sludge (R2). Results indicated that the start-up period was shorter in R2 than R1 for phosphorus removal, which made R2 reach the steady-state condition on day 21, while R1 was on day 25, and R2 released and took up more phosphorus than R1. As a result, the phosphorus removal was around 90% in R2 while 80% in R1 at the steady-state system. The special phosphorus release rate and special phosphorus uptake rate were 8.818 mg P/g volatile suspended solids (VSS)/h and 9.921 mg P/g VSS/h in R2, which were consistently greater than those (0.999 and 3.016 mg P/g VSS/h) in R1. The chemical oxygen demand removal in two reactors was similar. The granular SBR had better solid-separation performance and higher removal efficiency of NH4+–N than flocculent SBR. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA fragment analysis revealed that the diversity and the level of phosphorus-accumulating bacteria in flocculent sludge were much more than those in the granular sludge.  相似文献   

2.
Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell lysis. ECP contents of 41 to 92 mg · g–1 volatile suspended solids of granules were found depending on the type of granular sludge examined. The content of polysaccharides, protein and lipids in the extracted ECP was quantified. Furthermore, the different methyl esters of the lipids were determined and quantified. Lower amounts of polysaccharides and proteins were found in the extracellular material from granules grown on methanogenic and acetogenic substrates compared to granules grown on more complex substrates. In contrast, the lipid content was lower on complex substrates. Changing the feed of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore, the amount of protein and polysaccharides in the ECP found under mesophilic conditions was significantly higher than under thermophilic conditions, while the lipid content was lower.  相似文献   

3.
Experiments were performed for adsorption of milk-based substrates onto anaerobic biomass at 35 degrees C. The influence of two parameters was studied, namely, the type of biomass (flocculent or granular) and the sludge adaptation to the substrate. It was found that flocculent sludge presented an adsorption capacity roughly 3 times higher than that of granular sludge. The adsorption data fit well with the Freundlich and Langmuir isotherms. Apparently, short-term sludge adaptation is not influential on the adsorption behavior. On the other hand, long-term adapted sludge showed a higher adsorption capacity than nonadapted sludge, which probably is an indirect effect of different microbial populations. These results suggest that the role of adsorption in the anaerobic treatment of complex substrates containing fat cannot be overlooked, especially for flocculent sludge systems, since organic matter accumulation could cause process failure due to biomass washout.  相似文献   

4.
The process of nitrification–denitrification via nitrite for nitrogen removal under real-time control mode was tested in two laboratory-scale sequencing batch reactors (SBRs) with flocculent activated sludge (R1) and aerobic granular sludge (R2) to compare operational performance and real-time control strategies. The results showed that the average ammonia nitrogen, total inorganic nitrogen (TIN), and chemical oxygen demand (COD) removal during aeration phase were 97.6%, 57.0%, and 90.1% in R2 compared with 98.6%, 48.7%, and 88.1% in R1. The TIN removed in both SBRs was partially due to the presence of simultaneous nitrification–denitrification via nitrite, especially in R2. The specific nitrification and denitrification rates in R2 were 0.0416 mgNH4+–N/gSS-min and 0.1889 mgNOX–N/gSS-min, which were 1.48 times and 1.35 times that of R1. The higher rates for COD removal, nitrification, and denitrification were achieved in R2 than R1 with similar influent quality. Dissolved oxygen (DO), pH, and oxidization reduction potential, corresponding to nutrient variations, were used as diagnostic parameters to control the organic carbon degradation and nitrification–denitrification via nitrite processes in both SBRs. The online control strategy of granular SBR was similar to that of the SBR with flocculent activated sludge. However, a unique U-type pattern on the DO curve in granular SBR was different from SBR with flocculent activated sludge in aerobic phase.  相似文献   

5.
Five 4.02-1 UASB (Upflow Anaerobic Sludge Blanket) reactors were continuously operated at 30°C under different hydrodynamic regimes for more than 120 days. The effect of the upflow liquid velocity (ULV) over the range of 0.25 to 2.0 m/h on the biological characteristics of the granules formed by treating vinasses (waste water of alcohol distilleries) from sugar cane molasses was investigated constantly maintaining the volumetric loading rate (VLR) (8 g COD/l · d). Granular sludge was found at all the ULV tested. The size, shape, etc., of the granules indicated that the ULV had a considerable effect on the sludge cultivated in this type of system, thereby acting as a selection process for the biomass. The best results in relation to the time of appearance, size, shape, consistence, stability, composition, and the accumulation were observed in the ULV range between 0.25 and 0.5 m/h. Microscopic studies of the granules using optical and epifluorescence microscopes and the scanning electron micrograph (SEM) showed a heterogeneous biomass and revealed the cell characteristics.  相似文献   

6.
Results obtained in a 120 liter 2 m high UASB-reactor with raw domestic sewage and using a granular sugar beet waste cultivated seed sludge, reveal the feasibility of this type of anaerobic treatment for domestic sewage. Under dry weather conditions 65-85% COD reduction can be achieved at temperatures in the range of 8-20 degrees C and at hydraulic loads as high as 2 m(3) . m(-3) . day(-1). In the case of heavy rainfall the COD-reduction drops to 50-70% and occasionally, viz.at very low influent COD, even below 50%. The net methane production amounts to 7.1-7.3 m(3) . PE(-1) . year(-1), and the excess sludge production ranges form 5.0-8.6 kg TS . PE(-1) . year(-1). Regarding the results obtained anaerobic treatment of raw sewage not only looks an attractive proposition for tropic areas but also for moderate climatic areas.  相似文献   

7.
Although the dominant members of microbial communities in wastewater bio-treatment systems were often paid attention due to their possible important roles in treatment performance, their population sizes, especially the unculturable species, were still little known. Then PCR-DGGE was used in an attempt to estimate the dominant microbial population sizes in the anaerobic granular sludge treating streptomycin wastewater, coupled with an inoculated strain (Esherichia coli) with known population sizes as an internal standard. The results indicated that the band intensities of the inoculated strain in DGGE profiles showed good correlation with population sizes. Then it was possible to estimate the dominant microbial population sizes by means of comparing their DGGE band intensities with the inoculated strain. The estimated results demonstrated that the sizes of major dominant microbial populations in the sludge sample were at the level of 107–108 CFU/g. The sizes of secondary dominant microbial populations were at the level of 105–106 CFU/g. The microbial populations with the size level lower than 103 CFU/g were undetectable by PCR-DGGE. These results provided a potential approach to evaluate dominant microbial population sizes in complex microbial communities.  相似文献   

8.
Summary Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64° C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64° C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36° C and the other predominant at 46° C and above. Offprint requests to: J. B. van Lier  相似文献   

9.
Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume.  相似文献   

10.
Summary With granular sludges grown in an UASB reactor fed with a mixture of acetate and proplonate, it is shown that (I) growth of proplonate-utilizing bacteria is responsible for the increase of the VSS content of the granular sludge, acetoclastic microfiora did not grow or little, (II) there is not a stolchlometric relationship between substrate removal and observed methane production, and (III) contrary to the common practice the best way to present data on bacterial concentrations in sludges is: bacteria/g VSS, which will provide a reliable basis for comparisons between different works from various authors.  相似文献   

11.
The formation of granules grown on glucose in an upflow anaerobic sludge blanket (UASB) reactor was investigated. Total granular sludge concentration retained in the UASB reactor was 34.5 g MLSS/l (30.0 g MLVSS/l) during 240 d operation on glucose minimum medium with the supplementation of 1.07 g NaHCO3 per 1 g glucose. This realized a high-rate methanogenic fermentation of glucose of 17.6 g COD/l-reactor-d at 3.4 d−1 of space velocity. The granules formed were relatively small, ranging mainly from 0.4 to 0.5 mm, had a relatively low cell density of 0.0542–0.0560 g MLVSS/ml, and had low specific gravity (0.97–1.19) due to very low ash content (11–13%). Electron microscopic analysis showed that Methanothrix spp. appeared dominant over the granules. The specific metabolic activities of bacterial trophic groups were the highest for H2 followed by glucose, acetate, and propionate.  相似文献   

12.
The influence of a high energy substrate, i.e. sucrose, on the granular sludge yield and the development of different types of granular sludge was investigated by using Upflow Anaerobic Sludge Bed (UASB) reactors fed with synthetic wastewater. The feed COD was a mixture of volatile fatty acids (VFA) i.e., 20, 40, and 40% of the COD as C2-, C3-, and C4-VFA, respectively. Furthermore, experiments were carried out in which 10 and 30% of the VFA COD was substituted with sucrose. The following distinctly different types of granules were observed in each testrun: in the reactor fed with solely VFA, black (B) and white (W) granules developed; in the reactor fed with a mixture of 90% VFA and 10% sucrose, three types of granules i.e., B, W, and grey (G) granules could be seen; in the reactor fed with 70% VFA and 30% sucrose, only W and G granules were found. The granular sludge yield increased proportional to the amount of sucrose COD. At steady-state performance of the reactors, specific acidogenic (SAA) and methanogenic (SMA) activity tests on these granules revealed that B granules had the highest SMA with low SAA. The W granules had very high SMA with low SAA. G granules gave the highest SAA with a considerable SMA. Measurement of coenzyme F420 revealed that B granules consist mainly of acetoclastic methanogens. The fore-mentioned tests were supplemented with analyses of the wash-out cells present in the reactor effluent and the results suggested that acidogens, if present, prevail at the granule surface. The B granules were particularly rich in Ca, Mn, and Zn minerals. The size distribution analysis showed that the granule diameter increased in the following order: B相似文献   

13.
Solutions of sodium caprate and sodium laurate were digested in upflow anaerobic sludge bed (UASB) reactors inoculated with granular sludge and in expanded granular sludge bed (EGSB) reactors. UASB reactors are unsuitable if lipids contribute 50% or more to the COD of waste water: the gas production rate required to obtain sufficient mixing and contact cannot be achieved. At lipid loading rates exceeding 2–3 kg COD m−3 day−1, total sludge wash-out occurred. At lower loading rates the system was unreliable, due to unpredictable sludge flotation. EGSB reactors do fulfil the requirements of mixing and contact. They accommodate space loading rates up to 30 kg COD m−3 day−1 during digestion of caprate or laurate as sole substrate, at COD removal efficiencies of 83–91%, and can be operated at hydraulic residence times of 2 h without any problems. Augmentation of granular sludge in lab-scale EGSB reactors was demonstrated. The new granules had excellent settling properties. Floating layer formation, as well as mixing characteristics in full-scale EGSB reactors require further research.  相似文献   

14.
Liu YH  He YL  Yang SC  Li YZ 《Biotechnology letters》2006,28(20):1673-1678
Mean settling velocity of granular sludge in full-scale UASB (upflow anaerobic sludge blanket) and EGSB (expanded granular sludge bed) reactors was evaluated by settling column tests, and a settling velocity model based on the experimental results and available literature data was developed. It is concluded that the settling velocity should be calculated by the Allen formula, because the settling process of the granules is in the category of intermediate flow regime rather than in the laminar flow one. The comparison between calculated and measured values of the settling velocity shows an excellent agreement, with an average relative error of 4.04%. A simple but reliable mathematical method to determine the settling velocity is therefore proposed.  相似文献   

15.
Two shock loads of a commercial detergent (I-150 mg chemical oxygen demand (COD)/L, fed for 56 h; II-300 mg COD/L fed for 222 h) were applied in a lab-scale Expanded Granular Sludge Blanket (EGSB) reactor, fed with 1,500 mg COD/L of ethanol. The impact of the surfactant was assessed in terms of granular sludge morphology, specific methanogenic activity (SMA) in the presence of individual substrates, and reactor performance. COD removal efficiency remained unaffected in the shock I, but 80 h after starting exposure to the shock II, the COD removal efficiency decreased drastically from 75 to 17%. In the first 8 h of operation of shock I, the SMA was stimulated and decreased afterwards, being recovered 5 days after the end of exposure time. Concerning to shock II, the SMA was immediately and persistently reduced during the exposure time, although, the inhibition of SMA in presence of H(2)/CO(2) showed a trend to increase after the exposure time. Acetoclastic bacteria were observed as the most sensitive to the toxic effects of surfactant whereas the hydrogenotrophic bacteria were less affected. The inhibitory effects were dependent on surfactant concentration and exposure time. The ratio filaments length per total aggregates area (LfA) was an early-warning indicator of biomass washout, since it increased 3 and 5 days before effluent volatile suspended solids (VSS) rise, respectively, in shocks I and II.  相似文献   

16.
The changes in the sedimentological attributes of the sludge bed in an upflow anaerobic sludge blanket (UASB) reactor fed with a low-strength wastewater mimicking raw domestic sewage were assessed in this study. The reactor was inoculated with 250 ml of granular sludge from a full-scale UASB reactor. The organic loading rate (OLR) varied from 1 to 2 g COD/ld. During the half-year long study, the reactor was operated at hydraulic retention times (HRTs) of 4.8 and 10 h, at 33 degrees C. Sludge sedimentology showed that the original granular sludge experienced serious instability and disintegration, leading to a much finer final grain assemblage, mainly due to substrate transfer limitation and cell starvation at the interior of larger granules. With time, the size uniformity tended to decrease, sphericity tended to increase, the skewness of the granule size distribution became negative, and the kurtosis became peaked and leptokurtic. In spite of the observed size reduction, reactor efficiency increased to a CODtotal removal of 96%. Biomass (sludge) yield was 0.012 g VS/g COD removed. The CH4 content of the biogas was high (up to 96%). This study thus highlights the treatment of a new type of wastewater with the deployment of the UASB reactor. It also reports the evolutionary trend of the biomass particle size distribution, making reference to a classic sedimentological appraisal.  相似文献   

17.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

18.
The effect of pre-loading and in situ loading of cobalt onto a cobalt-limited granular sludge on the performance of methanol fed bioreactors was investigated. One upflow anaerobic sludge bed (UASB) reactor was inoculated with cobalt pre-loaded sludge (24h; 30 degrees C; 1 mM CoCl2) and a second UASB with unloaded sludge. The UASB reactors (30 degrees C; pH 7) were operated for 77 days at 8 h hydraulic retention time and organic loading rates ranging from 5 to 20 g COD.L reactor(-1).d(-1). Cobalt pre-loading clearly stimulated the methanogenic activity of the sludge with methanol as the substrate, e.g., after 30 days of reactor operation this activity was 5.8 times higher than that of the cobalt unloaded sludge. During the experiment, part of the cobalt leached from the pre-loaded sludge, i.e., 54% of the cobalt content was lost during the 77 days of reactor operation. Sequential metal extraction showed that losses mainly occurred from the exchangeable and carbonate fraction and in the sludge remaining cobalt was mainly present in the organic/sulfide fraction of the sludge. In situ loading of cobalt in the unloaded UASB reactor on day 57 by adding 31 microM cobalt to the influent for a 24-h period (16% of the cobalt present in the loaded sludge at day 11) resulted in a 4 time increase of the methanogenic activity of the sludge with methanol as the substrate at the end of the reactor experiment, while the accumulated amount of cobalt in the sludge only amounted to 6% of the cobalt accumulated in the loaded sludge (on day 11). This study showed that both pre-loading sludge and in situ loading are adequate for achieving an increased reactor performance of methanol fed UASB reactors operating under cobalt limitation. However, the in situ dosing procedure needs substantially lower amounts of cobalt, while it also gives significantly smaller losses of cobalt with the effluent.  相似文献   

19.
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4–800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80–100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.  相似文献   

20.
Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号