首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Experiments were conducted to determine (1) whether glucocorticoids directly protected endothelial cells (EC) from radiation and (2) if angiotensin converting enzyme (ACE) activity, known to be increased by glucocorticoid, played a role in the EC response to radiation. Confluent monolayers of EC cultured from bovine aorta EC were treated with dexamethasone (10(-6) M); after irradiation (5.0 Gy, 60Co gamma), ACE and lactate dehydrogenase (LDH) activities, DNA and protein contents, and nuclei number were measured. Twenty-four hours after 5 Gy, there was increased cell loss (-40%, P less than 0.001), greater LDH release (greater than 100%, P less than 0.001), more LDH activity per cell (+40%, P less than 0.001), and unchanged ACE activity compared to sham-irradiated control EC. However, 48 hr after 5 Gy, ACE activity per cell was decreased (-24%, P less than 0.005). A 48-hr exposure to dexamethasone alone was accompanied by a slight cell loss (-10%, P less than 0.001) and increased cellular ACE activity (+40-140%, P less than 0.001), but a 24-hr dexamethasone exposure was not cytotoxic and did not change ACE activity. Dexamethasone exposure for 48 hr before and after irradiation did not attenuate cell loss or LDH release. However, combined dexamethasone treatment and radiation increased cellular ACE activity at a time when neither agent alone had an effect (24-hr dexamethasone exposure before 5 Gy and assayed 24 hr after 5 Gy). This interaction between radiation and dexamethasone treatment suggests that the glucocorticoid modifies the cell's response to injury. Although this interaction does not ameliorate radiation cytotoxicity, maintenance of ACE levels in injured vessels by hormones may have physiological significance in the hemodynamics of irradiated tissues.  相似文献   

2.
Enzyme activities of the sn-glycerol 3-phosphate (glycerol-P) and of the dihydroxyacetone-phosphte (DHAP) pathway of glycerolipid biosynthesis were investigated during the differentiation of 3T3-L1 preadipocytes into adipocytes. Total particulate glycerol-P and DHAP acyltransferase activities increased 70- and 30-fold, respectively, during differentiation induced with methylisobutylxanthine and dexamethasone. The N-ethylmaleimide-sensitive (microsomal) glycerol-P and DHAP acyltransferase activities were virtually undetectable in nondifferentiated cells, and increased in parallel over 70-fold during differentiation. These and several kinetic observations are consistent with the induction of a single microsomal enzyme having dual activity. During differentiaion, the N-ethylmaleimide-resistant DHAP acyltransferase activity increased 10-fold, suggesting the presence of at least two DHAP acyltransferase isoenzymes. Qualitatively similar changes in microsomal glycerol-P and DHAP acyltransferase activities were observed when cell differentiation was induced with insulin or with insulin plus dexamethasone and methylisobutylxanthine. Acyl-DHAP oxidoreductase (EC 1.1.1.101) specific activity increased only 3- to 5-fold during adipocyte differentiation. Alkyl-DHAP synthase activity was not detected. These data demonstrate that selective changes in enzyme activities of the gycerol-P pathways of glycerolipid synthesis occur during the differentiation of 3T3-L1 preadipocytes.  相似文献   

3.
Sphingolipid metabolism was examined in human promyelocytic leukemia HL-60 cells. Differentiation of HL-60 cells with 1 alpha, 25-dihydroxyvitamin D3 (vitamin D3; 100 nM) was accompanied by sphingomyelin turnover. Maximum turnover of [3H]choline-labeled sphingomyelin occurred 2 h following vitamin D3 treatment, with sphingomyelin levels decreasing to 77 +/- 6% of control and returning to base-line levels by 4 h. Ceramide and phosphorylcholine were concomitantly generated. Ceramide mass levels increased by 55% at 2 h following vitamin D3 treatment and returned to base-line levels by 4 h. The amount of phosphorylcholine produced equaled the amount of sphingomyelin hydrolyzed, suggesting the involvement of a sphingomyelinase. Vitamin D3 treatment resulted in a 90% increase in the activity of a neutral sphingomyelinase from HL-60 cells. The inferred role of sphingomyelin hydrolysis in the induction of cell differentiation was investigated using an exogenous sphingomyelinase. When a bacterial sphingomyelinase was added at concentrations that caused a similar degree of sphingomyelin hydrolysis as 100 nM vitamin D3, it enhanced the ability of subthreshold levels of vitamin D3 to induce HL-60 cell differentiation. This study demonstrates the existence of a "sphingomyelin cycle" in human cells. Such sphingolipid cycles (Hannun, Y., and Bell, R. (1989) Science 243, 500-507) may function in a signal transduction pathway and in cellular differentiation.  相似文献   

4.
Treatment of confluent rat2 fibroblasts with C2-ceramide (N-acetylsphingosine), sphingomyelinase, or tumor necrosis factor-alpha (TNFalpha) increased phosphatidylinositol (PI) 3-kinase activity by 3-6-fold after 10 min. This effect of C2-ceramide depended on tyrosine kinase activity and an increase in Ras-GTP levels. Increased PI 3-kinase activity was also accompanied by its translocation to the membrane fraction, increases in tyrosine phosphorylation of the p85 subunit, and physical association with Ras. Activation of PI 3-kinase by TNFalpha, sphingomyelinase, and C2-ceramide was inhibited by tyrosine kinase inhibitors (genistein and PP1). The stimulation of PI 3-kinase by sphingomyelinase and C2-ceramide was not observed in fibroblasts expressing dominant-negative Ras (N17) and the stimulation by TNFalpha was decreased by 70%. PI 3-kinase activation by C2-ceramide was not modified by inhibitors of acidic and neutral ceramidases, and it was not observed with the relatively inactive analog, dihydro-C2-ceramide. It is proposed that activation of Ras and PI 3-kinase by ceramide can contribute to signaling effects of TNFalpha that occur downstream of sphingomyelinase activation and result in increased fibroblasts proliferation.  相似文献   

5.
Abstract— The effect of adrenalectomy or hypophysectomy on the metabolism of adenosine 3',5'-monophosphate (cyclic AMP) in the cerebral cortex of male Wistar rats was investigated.
The bilateral removal of adrenal glands reduced significantly the activity of cerebral adenylate cyclase [EC 4.6.1.1]. whereas that of cyclic 3'.5'-nucleotide phosphodiesterase [EC 3.1.4.17] remained unchanged. The formation of cyclic AMP measured in cerebral cortical slices from adrenalectomized or hypophysectomized rats was also diminished. Decreases in the activity of adenylate cyclase and formation of cyclic AMP following adrenalectomy were antagonized by in vivo administration of dexamethasone or aldosterone, while those observed in hypophysectomized rats were restored by ACTH or dexamethasone. It is suggested that the pituitary adrenal axis has a modulating role in the metabolism of cerebral cyclic AMP, possibly by changing adenylate cyclase activity.  相似文献   

6.
The activities of neutral, magnesium-stimulated, and acid sphingomyelinases were measured in five regions of rat brain. Neutral enzyme activity was 2-3-fold higher in striatum than in parietal cortex and 13-fold higher than in cerebral white matter. Acid sphingomyelinase activity was more evenly distributed throughout these regions. Striatal neutral sphingomyelinase activity was not affected by treatment of rats with reserpine or haloperidol and was reduced (16%) by 6-hydroxydopamine. Striatal acid sphingomyelinase was unaffected by reserpine and 6-hydroxydopamine, and was increased (17%) by haloperidol. We conclude that neutral, magnesium-stimulated sphingomyelinase activity differs in various regions of rat brain and is particularly enriched in the corpus striatum. However, it appears to be a constitutive component of tissue rather than a readily modulated regulatory element of the catecholaminergic system.  相似文献   

7.
8.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

9.
Bacillus cereus isolated from the larvae of Myrmeleon bore was found to secrete proteins that paralyze and kill German cockroaches, Blattela germanica, when injected. One of these active proteins was purified from the culture broth of B. cereus using anion-exchange and gel-filtration chromatography. The purified toxin, with a molecular mass of 34 kDa, was identified as sphingomyelinase C (EC 3.1.4.12) on the basis of its N-terminal and internal amino-acid sequences. A recombinant sphingomyelinase C expressed in Escherichia coli was as potent as the native protein in killing the cockroaches. Site-directed mutagenesis (His151Ala) that inactivated the sphingomyelinase activity also abolished the insecticidal activity, suggesting that the rapid insect toxicity of sphingomyelinase C results from its phospholipid-degrading activity.  相似文献   

10.
Acid sphingomyelinase from human urine: purification and characterization   总被引:8,自引:0,他引:8  
Acid sphingomyelinase (sphingomyelin phosphodiesterase, EC 3.1.4.12) was purified from human urine in the presence of 0.1% Nonidet P-40. The activity could be enriched 23,000-fold by sequential chromatography on octyl-Sepharose, concanavalin A-Sepharose, blue Sepharose and DEAE-cellulose. The last purification step yielded an enzyme preparation with a specific activity of about 2.5 mmol sphingomyelin cleaved/h per mg protein and with a yield of about 3%. Purified sphingomyelinase appeared to be homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 70 kDa. In the presence of 0.08% (w/v) sodium taurodeoxycholate the preparation showed phosphodiesterase activity toward sphingomyelin, phosphatidylcholine and phosphatidylglycerol. These activities co-purified during the entire purification procedure, indicating that the acid sphingomyelinase hydrolyses not only sphingomyelin but also the other two phospholipids, phosphatidylcholine and phosphatidylglycerol. Addition of 100 microM tripalmitoylglycerol to the assay system (which contains 100 microM sphingomyelin) instead of detergent, stimulated the reaction about 20-fold compared to an assay which did not contain detergents, thus offering a very sensitive and efficient system for the assay of sphingomyelinase in a system free of detergents. Sphingomyelin degradation was strongly inhibited by phosphatidylinositol 4',5'-bisphosphate, adenosine 3',5'-diphosphate and adenine-9-beta-D-arabinofuranoside 5'-monophosphate (50% inhibition at inhibitor concentrations of 1-5 microM).  相似文献   

11.
Thyroid diseases are one of the most common metabolic disorders in the human population. In this work, we present data concerning changes in the activity and kinetic parameters of several enzymes associated with both anabolic (glucose-6-phosphate dehydrogenase-G6PDH, EC 1.1.1.49; 6-phosphogluconate dehydrogenase-6PGDH, EC 1.1.1.44; malic enzyme-ME, EC 1.1.1.40; and isocitrate dehydrogenase-IDH, EC 1.1.1.42) and catabolic (NAD-dependent malate dehydrogenase-NAD-MDH, EC 1.1.1.37; and lactate dehydrogenase-LDH, EC 1.1.1.27) processes under conditions of hypothyroidism and T(3) treatment. Hypothyroidism was induced in rats by the surgical removal of the thyroid gland. T(3)-treated rats were injected by T(3) (0.5 mg T(3)/kg body weight daily during 10 days). We have found that T(3) treatment caused an increase of NAD-MDH activity as well as heart hypertrophy whereas the activity of LDH increased in the direction of pyruvate reduction. Moreover, we observed increased activity of both enzymes in the liver. These results confirm earlier observation concerning the relevance of oxidative metabolism in the heart under T(3) treatment. Hypothyroidism resulted in changes in the LDH activity in the heart whereas NAD-MDH activity did not change. Moreover, our data show that T(3) treatment caused an increase of G6PDH, 6PGDH, and ME activities in the liver. We also observed a decrease of IDH activity in both organs, whereas hypothyroidism caused the opposite effect. This data indicate that either deficiency or excess of thyroid hormones can prove to be particularly dangerous for the physiology of the heart muscle by disturbing bioenergetic and anabolic processes.  相似文献   

12.
Alkaline phosphatase (EC 3.1.3.1) activity in bovine aortic endothelial cells in culture was stimulated in a synergistic manner by 10(-6) M retinol and by 10(-7) M dexamethasone. An early exposure to retinol was required for maximum stimulation and could be reproduced by the addition, during growth, of 2 micrograms/ml compactin. The induced enzyme activity in cell lysates prepared from cells treated with retinol and dexamethasone had a Vmax that was 50-fold that of the controls. The stimulatory effect of retinol could be partially reversed by the addition of sonic dispersions made from cholesterol and phosphatidylcholine. The incorporation of [14C]acetate into saponifiable and non-saponifiable cellular lipids was inhibited by 10(-6) M retinol but the activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) and 3-hydroxy-3-methylglutaryl coenzyme A synthase (EC 4.1.3.5) remained unaffected. The results suggest that retinol might inhibit lipid biosynthesis through an alternate mechanism.  相似文献   

13.
The effect of long-term in vitro treatment with dexamethasone, insulin and/or LH on the 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity and the testosterone level was examined in cultures of Leydig cells from adult rats. A rapid and simple method for measuring the 3 beta-HSD activity has been developed, in which the NADH, generated by 3 beta-HSD, reduced nitroblue tetrazolium to a product with absorption maximum at 560 nm. Km for the reaction was 8.1 microM and Vmax was 12.7 nmol/min x mg protein. Addition of 0.1 or 1 microM dexamethasone for 44 h decreased the 3 beta-HSD activity to 83% and the basal testosterone level to 64% of control value after 22 and 44 h of culture. Addition of 1 nM insulin inhibited the 3 beta-HSD activity to 90% after 44 h of culture, whereas the testosterone level was increased after 3 h. Addition of 0.1 ng/ml LH did not affect the 3 beta-HSD activity in Leydig cells from adult rats. Concomitant treatment of the cells with dexamethasone and insulin inhibited the 3 beta-HSD activity to 74%, indicating an additive effect, whereas no additive effect on the testosterone level was observed. The results demonstrate that the 3 beta-HSD activity can be measured in a rapid and reliable way by measuring the reduction of nitroblue tetrazolium. Furthermore, the results suggest that dexamethasone acts on 3 beta-HSD through a mechanism different from that of insulin, as an additive effect was observed.  相似文献   

14.
15.
Foetal-rat hepatocytes were cultured in primary monolayer culture, and activity changes of argininosuccinate synthetase (ASS, EC 6.3.4.5) and argininosuccinase (ASL, EC 4.3.2.1) were followed under defined hormone conditions. In hormone-free medium, cultured cells maintained the enzyme activities at values equal to those of freshly isolated cells for at least 3 days. Continuous addition of dexamethasone produced the development of the two enzyme activities, but only after the first 20h of culture. Under these conditions, urea production by the foetal hepatocytes was concomitantly increased in the culture medium. Pretreatment with dexamethasone for 20h was sufficient to produce the development of ASL activity within the 2 following days. Introduced alone, glucagon induced an increase of ASL activity, but did not affect the ASS activity. The most powerful stimulation of ASS and ASL could be observed in cultured hepatocytes if glucagon and dexamethasone were added simultaneously or sequentially. These results indicated that the development of the receptor complex for the induction of urea-cycle enzymes appears early before birth and established that glucocorticoids amplify the glucagon stimulation of these enzyme activities during foetal life.  相似文献   

16.
We have examined the mechanism of the inhibition of cholesterol synthesis in cells treated with exogenous sphingomyelinase. Treatment of rat intestinal epithelial cells (IEC-6), human skin fibroblasts (GM-43), and human hepatoma (HepG2) cells in culture with sphingomyelinase resulted in a concentration- and time-dependent inhibition of the activity of HMG-CoA reductase, a key regulatory enzyme in cholesterol biosynthesis. The following observations were obtained with IEC-6 cells. Free fatty acid synthesis or general cellular protein synthesis was unaffected by the addition of sphingomyelinase. Addition of sphingomyelinase to the in vitro reductase assay had no effect on activity, suggesting that an intact cell system is required for the action of sphingomyelinase. The products of sphingomyelin hydrolysis, e.g., ceramide and phosphocholine, had no effect on reductase activity. Sphingosine, a further product of ceramide metabolism, caused a stimulation of reductase activity. Examination of the incorporation of [3H]acetate into the nonsaponifiable lipid fractions in the presence of sphingomyelinase showed no changes in the percent distribution of radioactivity in the post-mevalonate intermediates of the cholesterol biosynthetic pathway, but there was increased radioactivity associated with the polar sterol fraction. Pretreatment of cells with ketoconazole, a known inhibitor of oxysterol formation, prevented the inhibition of reductase activity by sphingomyelinase and decreased the incorporation of [3H]acetate in the polar sterol fraction. Ketoconazole had no effect on exogenous sphingomyelinase activity in vitro in the presence or absence of cells. Endogenous sphingomyelinase activity was also unaffected by ketoconazole. Addition of inhibitors of endogenous sphingomyelinase activity, e.g., chlorpromazine, desipramine, and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), to the culture medium caused a dose-dependent stimulation of reductase activity. However, these agents had no effect on the inhibition of reductase activity by exogenous sphingomyelinase. Treatment of cells with small unilamellar vesicles of dioleyl phosphatidylcholine or high density lipoprotein3 resulted in increased efflux of cholesterol and stimulation of reductase activity. Under similar conditions, the inhibitory effect of exogenous sphingomyelinase on reductase activity was prevented by incubation with small unilamellar vesicles of phosphatidylcholine or high density lipoprotein. These results support the hypothesis that alteration of the ratio of sphingomyelin:cholesterol in the plasma membrane plays a modulatory role on the flow of membrane cholesterol to a site where it may be converted to a putative regulatory molecule, possibly an oxysterol.  相似文献   

17.
Studies on the hydrophobic properties of sphingomyelinase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Crude liver lysosomal sphingomyelinase (EC 3.1.4.12) displays a heterogeneous electrofocusing profile. The majority of the enzyme resolves into two major components with acidic pI values near pH 4.6 and 4.8. Several additional minor peaks of activity are seen at more basic pH values (up to pH 8.0). In the presence of 0.1% Triton X-100 (or Cutscum), the location of sphingomyelinase is shifted by about 1 pH unit to more basic pH values. Triton X-100 also increases the apparent heterogeneity of sphingomyelinase. Removal of detergent by treatment with Bio Beads SM-2 restores the acidic pI profile. This behaviour appears to be specific, since it was not shared by six glycosidases several of which hydrolyse sphingolipids. The electrofocusing profile of 3H-labelled Triton X-100 was distinct and separate from sphingomyelinase, suggesting that only a small fraction of detergent interacted directly with the enzyme. To study this behaviour in more detail we examined the effect of detergents on elution of sphingomyelinase from sphingosylphosphocholine-Sepharose. Sphingosylphosphocholine is a competitive inhibitor of sphingomyelinase (Ki 0.5 mM). Binding of enzyme was pH-dependent. Triton X-100, Cutscum and Tween 20 eluted significant amounts of enzyme at 0.01-0.02%. Total elution was achieved with up to 0.1% detergent. These data suggest that sphingomyelinase binds to neutral detergent monomers with a high degree of affinity. In excess detergent (5-7 times the critical micellar concentration) the surface charge on the protein is changed, leading to a pI shift. This behaviour probably does not occur at the active site of the enzyme, since there is no appreciable effect on substrate hydrolysis and substrate analogues were ineffective in eluting the enzyme.  相似文献   

18.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) has been demonstrated both in homogenates and microsomes of the S3G strain of HeLa cells. It was increased 8- to 10-fold by the removal of serum from the growth medium. The presence of steroids, specifically of the glucocorticoid series, in the serum-less growth medium elicited an additional 100 to 345% increase over the serum-less control, whereas the addition of N6,O2'-dibutyryl adenosine 3':5'-monophosphate to the medium or dexamethasone to the assay mixture was without any stimulatory effect. Both inductions were blocked by cycloheximide and actinomycin D, suggesting a protein synthesis-dependent elevation of enzyme activity. Glucocorticoids were effective in the induction at concentrations ranging from 10(-6) to 10(-8) M and there was a demonstrated parallel between the magnitude of enzyme induction and glucocorticoid potency. The HMG-CoA reductase activities from steroid-induced and control cultures had identical assay characteristics (pH optima and apparent Km values for both NADPH and HMG-CoA). This induction of the rate-controlling enzyme of cholesterogenesis occurred despite the observation that glucocorticoids specifically depress the rate of acetate or water, but not mevalonate, incorporation into cholesterol.  相似文献   

19.
20.
Modulation of nucleotide pyrophosphatase in plasmacytoma cells.   总被引:1,自引:0,他引:1  
The effect of glucocorticoid hormones on the protein responsible for both nucleotide pyrophosphatase (EC 3.6.1.9) and alkaline phosphodiesterase I (EC 3.1.4.1) activities was examined in murine MOPC 315 plasmacytoma cells. Incubation of these cells with dexamethasone resulted in parallel increases in pyrophosphatase and phosphodiesterase specific activities. The incorporation of [3H]mannose into N-linked oligosaccharide precursors was also analyzed in cells following hormone modulation. In cells treated for 36 hours or cultured continuously with dexamethasone, the resulting increase in enzyme specific activities was accompanied by a decrease in [3H]mannose incorporation, consistent with the hypothesis that in some cell types, nucleotide pyrophosphatase activity is involved in the regulation of glycoprotein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号