首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose.  相似文献   

2.
Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts   总被引:9,自引:0,他引:9  
Jessen BA  Stevens GJ 《Gene》2002,299(1-2):95-100
The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. Changes in gene expression were measured by DNA microarrays at three time points (24 h, 4 days, and 1 week) during the course of differentiation from preadipocytes to mature adipocytes. Several functional categories of genes were affected by adipocyte conversion. In addition, seven genes were found to be commonly altered by 5-fold or more by adipocyte conversion at all three time points. Lipocalin 2, haptoglobin, serum amyloid A3, stearoyl-CoA desaturase, and 11beta-hydroxysteroid dehydrogenase 1 were induced while actin alpha2 and procollagen VIII alpha1 were suppressed by adipocyte differentiation. Further study of the regulation of these genes and pathways will lead to an increased understanding of the biochemical pathways involved in adipocyte differentiation and possibly to the identification of new therapeutic targets for treatment of obesity and other metabolic diseases.  相似文献   

3.
4.
The beta 2-adrenergic receptor from mouse 3T3-L1 cells is up-regulated through genetic mechanisms by glucocorticoids and butyrate. To study the genetic regulation of these receptors, we sequenced a 5 kb region of genomic DNA from 3T3-L1 cells, containing the beta-adrenergic receptor gene and approx. 1.5 kb of both 5' and 3' flanking sequences. The sequence contained one copy of an 8 bp consensus sequence which can confer phorbol ester-responsiveness to genes. Phorbol esters attenuated the up-regulation of beta 2-adrenergic receptors by glucocorticoids but not by butyrate. This effect was probably due to a phorbol ester-induced decrease in glucocorticoid receptor number. Using methylation-sensitive restriction enzymes, we examined the methylation of a CG-rich region occurring 5' to the gene and did not detect any changes in methylation of this region upon dexamethasone or butyrate treatment. A total of 16 putative glucocorticoid response elements were found which may mediate the glucocorticoid-induced increase in beta 2-adrenergic receptors. A comparison of the regulatory sequences of the two beta-adrenergic receptor subtypes from human and mouse confirms the observed physiological controls of receptor subtype expression and offers an explanation as to why the subtypes differ in genetic regulation.  相似文献   

5.
Objectives: Tristetraprolin (TTP) family proteins (TTP/ZFP36; ZFP36L1, ZFP36L2, ZFP36L3) destabilize adenylate uridylate‐rich element‐containing mRNAs encoding cytokines, such as tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF). Little is known about the expression and insulin regulation of TTP and related genes in adipocytes. We analyzed the relative abundance of TTP family mRNAs in 3T3‐L1 adipocytes compared to RAW264.7 macrophages and investigated insulin effects on the expression of 43 genes in 3T3‐L1 adipocytes. Methods and Procedures: Insulin was added to mouse 3T3‐L1 adipocytes. Relative abundance of mRNA levels was determined by quantitative real‐time PCR. TTP and ZFP36L1 proteins were detected by immunoblotting. Results: Zfp36l1 and Zfp36l2 genes were expressed at eight‐ to tenfold higher than Ttp in adipocytes. Zfp36l3 mRNA was detected at ~1% of Ttp mRNA levels in adipocytes and its low level expression was confirmed in RAW cells. Insulin at 10 and 100 nmol/l increased Ttp mRNA levels by five‐ to sevenfold, but decreased those of Zfp36l3 by 40% in adipocytes after a 30‐min treatment. Immunoblotting showed that insulin induced TTP but did not affect ZFP36L1 protein levels in adipocytes. Insulin decreased mRNA levels of Vegf and a number of other genes in adipocytes. Discussion: Insulin induced Ttp mRNA and protein expression and decreased Vegf mRNA levels in adipocytes. Zfp36l3 mRNA was detected, for the first time, in cells other than mouse placenta and extraembryonic tissues. This study established a basis for the investigation of TTP and VEGF genes in the regulation of obesity and suggested that Vegf mRNA may be a target of TTP in fat cells.  相似文献   

6.
7.
Insulin activates signaling pathways in target tissues through the insulin receptor and Tyr phosphorylation of intracellular proteins. Vanadate mimics insulin and enhances its actions through inhibition of protein Tyr phosphatases. Chromium is a micronutrient that enhances insulin action to normalize blood glucose, but the mechanism is not understood. Here we show that either vanadate or chromium stimulates Tyr phosphorylation of insulin receptor in mouse 3T3-L1 adipocytes compared to insulin alone, but a combination of vanadate and chromium is not additive. Phosphorylation of MAPK or 4E-BP1 as markers for insulin signaling is stimulated by vanadate plus insulin, and chromium does not enhance the effects. Vanadate robustly activates glucose uptake by 3T3-L1 adipocytes even without added insulin and increases insulin-stimulated glucose uptake. Chromium pretreatment of adipocytes slightly enhances glucose uptake in response to insulin, but significantly increases glucose uptake above that induced by insulin plus vanadate. These data show that chromium enhances glucose uptake even when Tyr phosphorylation levels are elevated by vanadate plus insulin, suggesting separate mechanisms of action for vanadate and chromium.  相似文献   

8.
Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.  相似文献   

9.
10.
Plasma membranes were isolated from 3T3-L1 adipocytes. Plasma membrane phosphodiesterase (PM-PDE) was measured in the presence of 5 microM cilostamide. Time course and cAMP dose response ranging from 0 to 2 microM were measured. PM-PDE remained linear up to 20 min. Non-linear curve fitting analysis showed that the low Km cAMP dose data fit a two component curve significantly better than a one component curve, indicating that there are two iso-forms of PDE in the plasma membrane of 3T3-L1 adipocytes, similar to swine adipocytes. The Km and Vmax values for this two component curve were Km1=0.12 microM, Vmax1=3.08 pmol min(-1) mg(-1) protein, and Km2=3.67 microM, Vmax2=83.8 pmol min(-1) mg(-1) protein. Inhibitors of PDE1, PDE2 and PDE5 failed to inhibit PM-PDE, as observed in swine adipocyte plasma membranes. However, PDE4 inhibitors were three-fold more effective at inhibiting PDE in 3T3-L1 PM compared to swine adipocyte PM. One mM 1, 3-dipropyl-8-p-sulfophenylxanthine (DPSPX) inhibited PM-PDE by approximately 75% in both preparations. These data demonstrate that PM-PDE is distinct from microsomal membrane PDE and may be responsible for extracellular cAMP metabolism to AMP in 3T3-L1 adipocytes.  相似文献   

11.
Differentiating (3T3-L1) and nondifferentiating (3T3-C2) fibroblastic cell lines possess two classes of insulin receptors, high affinity (KD = 1.0 to 3.7 X 10(-9) M) and low affinity (KD = 2.0 to 3.6 X 10(-8) M). Confluent cultures of 3T3-L1 cells induced to differentiate by insulin (1.74 x 10(-6) M) or indomethacin (1.25 x 10(-4) M) exhibit a 3-fold increase in the number of high affinity and low affinity receptors per cell or a 1.5- to 1.8-fold increase in the number of receptors per micron2 of surface area. In contrast, nondifferentiating 3T3-C2 cells treated with insulin or indomethacin lose almost completely the high affinity insulin receptors while retaining the same levels of low affinity receptors. The loss of high affinity receptors of the 3T3-C2 cells is accompanied by the disappearance of the stimulatory effect of insulin on the production of CO2 from glucose and on the uptake of aminoisobutyrate. The levels of high affinity insulin receptors appear to be regulated by different mechanisms in the differentiating (3T3-L1) and nondifferentiating (3T3-C2) cell lines. The mode of this regulation may have a bearing on the ability of a particular cell line to differentiate.  相似文献   

12.
13.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

14.
The objective of this study was to examine the expression of the c-raf-1 and A-rat-1 protooncogenes during differentiation of 3T3-L1 preadipocytes into adipocytes. At confluence, prior to initiation of differentiation c-raf and A-raf steady state mRNA levels were low. Expression of c-raf and A-raf began to increase 72 hours following initiation of differentiation by treatment with differentiation medium, reaching a maximum increase of 3 to 6-fold and 3 to 4-fold respectively by 190 hours. The increase of c-raf and A-raf steady state message levels occurred concomitant with the onset of differentiation as indicated by increased levels of glycerol-3-phosphate dehydrogenase mRNA. These changes were compared with those for several other protooncogene mRNAs including c-myc, c-fos, H-ras and histone H3. These results are the first to show increase expression of the raf protooncogenes during terminal differentiation rather than in association with proliferation.  相似文献   

15.
Gelsolin, an actin-binding protein, shows a strong ability to bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we showed in in vitro experiments that gelsolin inhibited recombinant phospholipase D1 (PLD1) and PLD2 activities but not the oleate-dependent PLD and that this inhibition was not reversed by increasing PIP(2) concentration. To investigate the role of gelsolin in agonist-mediated PLD activation, we used NIH 3T3 fibroblasts stably transfected with the cDNA for human cytosolic gelsolin. Gelsolin overexpression suppressed bradykinin-induced activation of phospholipase C (PLC) and PLD. On the other hand, sphingosine 1-phosphate (S1P)-induced PLD activation could not be modified by gelsolin overexpression, whereas PLC activation was suppressed. PLD activation by phorbol myristate acetate or Ca(2+) ionophore A23187 was not affected by gelsolin overexpression. Stimulation of control cells with either bradykinin or S1P caused translocation of protein kinase C (PKC) to the membranes. Translocation of PKC-alpha and PKC-beta1 but not PKC-epsilon was reduced in gelsolin-overexpressed cells, whereas phosphorylation of mitogen-activated protein kinase was not changed. S1P-induced PLC activation and mitogen-activated protein kinase phosphorylation were sensitive to pertussis toxin, but PLD response was insensitive to such treatment, suggesting that S1P induced PLD activation via certain G protein distinct from G(i) for PLC and mitogen-activated protein kinase pathway. Our results suggest that gelsolin modulates bradykinin-mediated PLD activation via suppression of PLC and PKC activities but did not affect S1P-mediated PLD activation.  相似文献   

16.
Previous studies have shown that flavonoids inhibit glucose uptake in cultured cells. In this report, we show that the grapefruit flavanone naringenin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Naringenin acts by inhibiting the activity of phosphoinositide 3-kinase (PI3K), a key regulator of insulin-induced GLUT4 translocation. Although naringenin did not alter the phosphotyrosine status of the insulin receptor, insulin receptor substrate proteins, or PI3K, it did inhibit the phosphorylation of the downstream signaling molecule Akt. In an in vitro kinase assay, naringenin inhibited PI3K activity. A physiologically attainable dose of 6 microM naringenin reduced insulin-stimulated glucose uptake by approximately 20%. This inhibitory effect remained 24h after the removal of naringenin from the culture medium. Collectively, our findings suggest that the regular consumption of naringenin in grapefruit may exacerbate insulin resistance in susceptible individuals via impaired glucose uptake in adipose tissue.  相似文献   

17.
18.
Summary The acute effect of insulin on 3H incorporation into lipid from glucose was measured in 3T3-L1 fatty fibroblasts cultured with and without insulin at 10 µg/ml for 7 days. Basal lipid synthesis did not differ between control cells and cells treated chronically with insulin. There was no insulin stimulation in treated cells while 3H incorporation into lipid in control cells increased from a basal level of 1.39 to 3.85 nmol/dish/90 min with a maximally-stimulating concentration of insulin. This is the first study of 3T3-L1 fatty fibroblasts which describes a lack of acute insulin responsiveness in cells exposed chronically to insulin as compared to control cells.Abbreviations KRP buffer Kreb's Ringer phosphate buffer - BSA bovine serum albumin Dr. Pohl is the recipient of Research Career Development Award AM 00183.  相似文献   

19.
20.
When non-proliferating 3T3-L1 fibroblasts were stimulated to differentiate into adipose cells, there was a dramatic increase in the intracellular level of the polyamine, spermidine. Addition of α-difluoromethylornithine, an inhibitor of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation. The inhibitory effect of α-difluoromethylorinithine was completely abolished by provision of spermidine or putrescine. This suggests that polyamines are needed in the processes of differentiation as well as their established requirement for cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号