首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Antibodies have been prepared to rat hepatic cytochrome P-450 and their specificity demonstrated. These antibodies have been used to investigate the biosynthesis of cytochrome P-450 in vitro and in situ in various components of the endoplasmic reticulum. 2. A preparation of heavy rough endoplasmic reticulum translocates proteins newly biosynthesized in vitro vectorially into the luminal space and these are released by low concentrations of deoxycholate. A significant proportion of the radioactivity found in this released fraction is incorporated into cytochrome P-450. 3. Following incorporation of [14C]leucine by perfused rat liver, radioactively labelled cytochrome P-450 can be found in the intrascisternal content of heavy rough, light rough and smooth endopalsmic reticulum and also in a solublized Golgi preparation. 4. We suggest that at least part of the newly biosynthesized cytochrome P-450 is translocated into the intracisternal space of the rough endoplasmic and then passes through the other components of the endoplasmic reticulum before insertion at its ultimate membrane locus.  相似文献   

2.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

3.
The suggestion that a rapidly sedimenting rough endoplasmic reticulum fraction in close association with mitochondria, is the preferred site of cytochrome P-450 synthesis has been examined. The rate of cytochrome P-450 synthesis in the different subcellular fractions has been evaluated invivoandinvitro, using the immunoprecipitation technique. The results indicate that the conventional microsomal fraction (100,000 X g sediment) is the major site of cytochrome P-450 synthesis and that the rapidly sedimenting rough endoplasmic reticulum fraction associated with mitochondria is not a preferred site for the hemoprotein synthesis.  相似文献   

4.
To determine the subcellular sites for synthesis and processing of human chorionic gonadotropin subunits in cells, first trimester placental cells were fractionated subcellularly on sucrose density gradients. Analysis of the subcellular fractions by immunobinding techniques revealed that the rough endoplasmic reticulum-rich fraction contained only intermediates having high-mannose oligosaccharides, but the Golgi-rich fraction contained not only intermediates but also mature forms which were resistant to endoglycosidase H but sensitive to neuraminidase. These results show that human chorionic gonadotropin subunits are synthesized in the rough endoplasmic reticulum as forms containing high-mannose oligosaccharides, and their maturation occurs in the Golgi apparatus by trimming with endogenous glycosidases. They are then modified by addition of complex oligosaccharides and terminal sialic acid through glycosyltransferases.  相似文献   

5.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) was studied by negative staining in the electron microscope. The best resolution was obtained with uranyl oxalate (pH 6.0) as negative stain. Electron micrographs confirm the idea of the dimeric structure of the enzyme. A rough model of cytochrome oxidase was constructed based on different projections of the molecule seen in the electron micrographs. In this model the subunits are identical and sterically equivalent.  相似文献   

6.
Bovine heart cytochrome c oxidase consists of 12 stoicheiometric polypeptide chains of at least 11 different types. The enzyme contains 14--16 cysteine residues; the distribution of nearly all cysteine residues over the subunits has been established. In native cytochrome c oxidase two thiol groups reacted rapidly and stoicheiometrically with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). These thiol groups are located in subunits I and III, respectively. This implies that subunit I is not fully buried in the hydrophobic core of the enzyme. After dissociation of the enzyme by sodium dodecyl sulphate more thiol groups became available to DTNB, in addition to those in subunits I and III, at least one in subunit II, two in fraction V/VI and one to two in the smallest subunit fraction. It is shown that separation of the subunits of cytochrome c oxidase by gel permeation chromatography in the presence of sodium dodecyl sulphate depends on the pH of the elution medium. The elution volume of subunits I, III and VII is dependent on pH, that of the others independent.  相似文献   

7.
A detailed procedure for subcellular fractionation of the smooth muscle from pig coronary arteries based on dissection of the proper tissue, homogenization, differential centrifugation and sucrose density gradient centrifugation is described. A number of marker enzymes and Ca2+ uptake in presence or absence of oxalate, ruthenium red and azide were studied. The ATP-dependent oxalate-independent azide- or ruthenium red-insensitive Ca2+ uptake, and the plasma membrane markers K+-activated ouabain-sensitive p-nitrophenylphosphatase, 5'-nucleotidase and Mg2+-ATPase showed maximum enrichment in the F2 fraction (15-28% sucrose) which was also contaminated with the endoplasmic reticulum marker NADPH: cytochrome c reductase, and to a small extent with the inner mitochondrial marker cytochrome c reductase, and also showed a small degree of oxalate stimulation of the Ca2+ uptake. F3 fraction (28-40% sucrose) was maximally enriched in the ATP- and oxalate-dependent azide-insensitive Ca2+ uptake and the endoplasmic reticulum marker NADPH: cytochrome c reductase but was heavily contaminated with the plasma membrane and the inner mitochondrial markers. The mitochondrial fraction was enriched in cytochrome c oxidase and azide- or ruthenium red-sensitive ATP-dependent Ca2+ uptake but was heavily contaminated with other membranes. Electron microscopy showed that F2 contained predominantly smooth surface vesicles and F3 contained smooth surface vesicles, rough endoplasmic reticulum and mitochondria. The ATP-dependent azide-insensitive oxalate-independent and oxalate-stimulated Ca2+ uptake comigrated with the plasma membrane and the endoplasmic reticulum markers, respectively, and were preferentially inhibited by digitonin and phosphatidylserine, respectively. This study establishes a basis for studies on receptor distribution and further Ca2+ uptake studies to understand the physiology of coronary artery vasodilation.  相似文献   

8.
Isolated cytochrome c oxidase was fractionated by native-gel electrophoresis in Triton X-100, and a preparation of enzyme almost completely free of the usual impurities was recovered. This fraction was used to generate antibodies specific to cytochrome c oxidase. These antibodies inhibited cytochrome c oxidase activity rapidly and completely and immunoprecipitated an enzyme containing seven different subunits from detergent-solubilized mitochondria or submitochondrial particles. Reaction of detergent-solubilized cytochrome c oxidase with [35S]diazobenzenesulfonate labeled all seven subunits although I and VI were much less reactive than the other five components. When cytochrome c oxidase was immunoprecipitated from mitochondria which had been reacted with [35S]DABS, subunits II and III were the only components labeled. When the complex was immunoprecipitated from labeled submitochondrial particles, II, III, IV, V, and VII were all labeled. Polypeptides I and VI were not labeled from either side of the membrane. These results confirm earlier studies which showed that cytochrome c oxidase spans the mitochondrial inner membrane and is asymmetrically arranged across this permeability barrier.  相似文献   

9.
Employing [32P]ADP-ribosylation by pertussis toxin we have identified a G protein that is located in the rough endoplasmic reticulum of canine pancreas and therefore termed it GRER. Identification of GRER is based on the following data. A 41-kDa polypeptide was the only polypeptide that was [32P]ADP-ribosylated by pertussis toxin in pancreas rough microsomes. Guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) and 1 mM ATP, 6 mM MgCl2, 10 mM NaF (AMF) inhibited ADP-ribosylation of this polypeptide. The [32P]ADP-ribosylated 41-kDa polypeptide was immunoprecipitated by antisera which specifically recognized the C-terminal residues of the alpha subunits of Gi and transducin, indicating that the 41-kDa polypeptide is immunologically related to the alpha subunits of heterotrimeric G proteins. Treatment with GTP gamma S resulted in a reduction in the sedimentation rate of the [32P]ADP-ribosylated, detergent-solubilized GRER. It also induced the release of the [32P]ADP-ribosylated 41-kDa polypeptide from rough microsomes in the absence of detergent, unlike ADP-ribosylated alpha subunits of plasma membrane-associated G proteins. These data are consistent with an oligomeric nature of GRER. The codistribution of GRER with an endoplasmic reticulum marker protein during subcellular fractionation and the lack of plasma membrane contamination of the rough microsomal fraction, combined with the isodensity of GRER with rough microsomes as well as the isodensity of GRER with "stripped" microsomes after extraction of rough microsomes with EDTA and 0.5 M KCl, localized GRER to the rough endoplasmic reticulum. Preliminary experiments suggest that GRER appears not to be involved in translocation of proteins across the rough endoplasmic reticulum membrane.  相似文献   

10.
The mechanism of an increase in cytochrome c oxidase [EC 1.9.3.1] activity during aging of sliced sweet potato root tissue was investigated with antibiotics and antibody to the purified enzyme. 1. The increase in cytochrome c oxidase activity was inhibited by chloramphenicol but not by cycloheximide. 2. Cytochrome c oxidase purified from wounded tissue was identical with that from intact tissue as judged by the subunit composition, sedimentation velocity, absorption spectrum, antigenicity, and activity per heme a. 3. An increase in the amount of cytochrome c oxidase protein took place during aging of slices. 4. Sweet potato cytochrome c oxidase consists of five subunits. When slices were aged in the presence of [3H]leucine, the three larger subunits (I, II, and III) of cytochrome c oxidase were labeled, while no radioactivity was incorporated into the other two subunits, IV and V. The results indicate that the increase in cytochrome c oxidase activity is due to an increase in the amount of the enzyme protein. We propose that excess amounts of subunits derived from the cytoplasm of the enzyme are present in intact tissue and are assembled with subunits of mitochondrial origin to form the holoenzyme after wounding of tissue.  相似文献   

11.
Isolated rat hepatocytes were labelled with [35S]methionine, dissolved in Triton X-100-containing buffer, and incubated with antibodies against rat liver cytochrome c oxidase. After separation by dodecyl sulfate-gel electrophoresis the fluorogram of immunoprecipitated proteins showed two labelled bands with apparent molecular weights of 52000 and 182000. The immunological relationship of the two proteins to cytochrome c oxidase was demonstrated by immunocompetition with the isolated enzyme and with purified subunits IV-VIII. Although the precursor nature of the two described proteins for cytoplasmically synthesized subunits of cytochrome c oxidase cannot be excluded, the following observations do not support this assumption: 1) The amount of incorporated radioactivity is too high; 2) they are exclusively located with the microsomal fraction; 3) the turnover is rather slow, compared to that of known precursor proteins.  相似文献   

12.
To identify nuclear functions required for cytochrome c oxidase biogenesis in yeast, recessive nuclear mutants that are deficient in cytochrome c oxidase were characterized. In complementation studies, 55 independently isolated mutants were placed into 34 complementation groups. Analysis of the content of cytochrome c oxidase subunits in each mutant permitted the definition of three phenotypic classes. One class contains three complementation groups whose strains carry mutations in the COX4, COX5a, or COX9 genes. These genes encode subunits IV, Va, and VIIa of cytochrome c oxidase, respectively. Mutations in each of these structural genes appear to affect the levels of the other eight subunits, albeit in different ways. A second class contains nuclear mutants that are defective in synthesis of a specific mitochondrial-encoded cytochrome c oxidase subunit (I, II, or III) or in both cytochrome c oxidase subunit I and apocytochrome b. These mutants fall into 17 complementation groups. The third class is represented by mutants in 14 complementation groups. These strains contain near normal amounts of all cytochrome c oxidase subunits examined and therefore are likely to be defective at some step in holoenzyme assembly. The large number of complementation groups represented by the second and third phenotypic classes suggest that both the expression of the structural genes encoding the nine polypeptide subunits of cytochrome c oxidase and the assembly of these subunits into a functional holoenzyme require the products of many nuclear genes.  相似文献   

13.
A subfraction of rough endoplasmic reticulum (RER) characterized by its close association with mitochondria (MITO) was isolated from low speed pellets of normal rat liver homogenate under defined ionic conditions. This fraction enriched in MITO-RER complexes contained 20% of cellular RNA, 20% of glucose-6-phosphatase and 47% of cytochrome c oxidase activities. Morphologically, the isolated MITO-RER complexes closely resembled physiological associations between the two organelles commonly seen in intact liver. Partial dissociation of RER from mitochondria of the MITO-RER fraction was achieved by either EDTA (0.5 mM) or by hypotonic/hypertonic treatment of MITO-RER complexes. With the latter procedure approx. 70% of RER (RERmito) with 50% of ribosomes still attached could be separated from the inner compartments of mitochondria. This RERmoto exhibited a higher glucose-6-phosphatase activity than RER isolated as rough microsomes from the postmitochondrial supernatant. Isopycnic centrifugation on linear metrizamide gradients revealed that the mitochondria-associated part of RER corresponds to the high density, ribosome-rich subfraction of rough microsomes isolated in cation-free sucrose solution. The combined data demonstrate that a morphologically and biochemically distinct portion of RER is associated with mitochondria and support the concept of considerable intracellular heterogeneities in distribution of enzymes and enzyme systems along the lateral plane of the endoplasmic reticulum membrane system.  相似文献   

14.
W Dowhan  C R Bibus    G Schatz 《The EMBO journal》1985,4(1):179-184
Yeast cytochrome c oxidase contains three large subunits made in mitochondria and at least six smaller subunits made in the cytoplasm. There is evidence that the catalytic centers (heme a and copper) are associated with the mitochondrially-made subunits, but the role of the cytoplasmically-made subunits has remained open. Using a gene interruption technique, we have now constructed a Saccharomyces cerevisiae mutant which lacks the largest of the cytoplasmically-made subunits (subunit IV). This mutant is devoid of cyanide-sensitive respiration, the absorption spectrum of cytochrome aa3 and cytochrome c oxidase activity. It still contains the other cytochrome c oxidase subunits but these are not assembled into a stable complex. Active cytochrome c oxidase was restored to the mutant by introducing a plasmid-borne wild-type subunit IV gene; no restoration was seen with a gene carrying an internal deletion corresponding to amino acid residues 28-66 of the mature subunit. Subunit IV is thus necessary for proper assembly of cytochrome c oxidase.  相似文献   

15.
Synthesis and deposition of zein in protein bodies of maize endosperm   总被引:27,自引:15,他引:27       下载免费PDF全文
The origin of protein bodies in maize (Zea mays L.) endosperm was investigated to determine whether they are formed as highly differentiated organelles or as protein deposits within the rough endoplasmic reticulum. Electron microscopy of developing maize endosperm cells showed that membranes surrounding protein bodies were continuous with rough endoplasmic reticulum membranes. Membranes of protein bodies and rough endoplasmic reticulum both contained cytochrome c reductase activity indicating a similarity between these membranes. Furthermore, the proportion of alcohol-soluble protein synthesized by polyribosomes isolated from protein body or rough endoplasmic reticulum membranes was similar, and the alcohol-soluble or -insoluble proteins showed identical [14C]leucine labeling. These results demonstrated that protein bodies form simply as deposits within the rough endoplasmic reticulum.

Messenger RNA that directed synthesis of only the smaller molecular weight zein subunit was separated from mRNA that synthesized both subunits by sucrose gradient centrifugation. This result demonstrated that separate but similar sized mRNAs synthesize the major zein components. In vitro translation products of purified mRNAs or polyribosomes were approximately 2,000 daltons larger than native zein proteins, suggesting that the proteins are synthesized as zein precursors. When intact rough endoplasmic reticulum was placed in the in vitro protein synthesis system, proteins corresponding in molecular weight to the native zein proteins were obtained.

  相似文献   

16.
Yeast mutants specifically lacking cytochrome c oxidase activity were screened for cytochrome c oxidase subunits by one- and two-dimensional electrophoresis, electrophoresis in exponential gradient gels, and immunoprecipitation with antisera against one or more of the cytoplasmically made subunits of the enzyme. Two cytochrome c oxidase-less nuclear mutants previously described from this laboratory each lack one or more mitochondrially synthesized cytochrome c oxidase subunits while possessing all four cytoplasmically synthesized subunits of that enzyme. The subunits remaining in these mutants were not assembled with each other; the cytoplasmically made subunits IV and VI could be released from the mitochondria by sonic oscillation, in contrast to the situation in wild type cells. No electrophoretically detectable alterations were found in any of the cytochrome c oxidase subunits present in the mutants. Nuclear mutations may thus cause both a loss as well as a defective assembly of mitochondrially made cytochrome c oxidase subunits.  相似文献   

17.
Low-speed centrifugation (640 g) of rat liver homogenates, prepared with a standard ionic medium, yielded a pellet from which a rapidly sedimenting fraction of rough endoplasmic reticulum (RSER) was recovered free of nuclei. This fraction contained 20-25% of cellular RNA and approximately 30% of total glucose-6-phosphatase (ER marker) activity. A major portion of total cytochrome c oxidase (mitochondrial marker) activity was also recovered in this fraction, with the remainder sedimenting between 640 and 6,000 g. Evidence is provided which indicates that RSER may be intimately associated with mitochondria. Complete dissociation of ER from mitochondria in the RSER fraction required very harsh conditions. Sucrose density gradient centrifugation analysis revealed that 95% dissociation could be achieved when the RSER fraction was first resuspended in buffer containing 500 mM KCl and 20 mM EDTA, and subjected to shearing. Excluding KCl, EDTA, or shearing from the procedure resulted in incomplete separation. Both electron microscopy and marker enzyme analysis of mitochondria purified by this procedure indicated that some structural damage and leakage of proteins from matrix and intermembrane compartments had occurred. Nevertheless, when mitochondria from RSER and postnuclear 6,000-g pellet fractions were purified in this way fromanimals injected with [35S]methionine +/- cycloheximide, mitochondria from the postnuclear 6,000-g pellet were found to incorporate approximately two times more cytoplasmically synthesized radioactive protein per milligram mitochondrial protein (or per unit cytochrome c oxidase activity) than did mitochondria from the RSER fraction. Mitochondria-RSER associations, therefore, do not appear to facilitate enhanced incorporation of mitochondrial proteins which are newly synthesized in the cytoplasm.  相似文献   

18.
ONTOGENETIC CHANGES OF PROTEINS OF ENDOPLASMIC RETICULUM   总被引:1,自引:0,他引:1       下载免费PDF全文
The proteins of the smooth and rough endoplasmic reticulum from fetal, immature, and adult male rats were compared after incorporation of two radioactively labeled precursors, 14C-labeled amino acids and δ-aminolevulinic acid-3H by means of gel electrophoresis. The labeling patterns indicated that protein components present in two major electrophoretic bands underwent significant synthesis in fetal tissue while three actively incorporating protein bands were noted in adult tissue. Although the uptake of the amino acids-14C decreased for the smooth and rough elements of the endoplasmic reticulum as a whole during liver development, the qualitative patterns were not significantly different in adult and fetal livers. The over-all incorporation (disintegrations per minute per milligram protein) of the heme precursor into the smooth and rough elements also did not change with development. However, a change was noted in the distributional electrophoretic patterns with development. The estimation of molecular weight (by disc electrophoresis) and the incorporation of the heme precursor suggested the similarity of the two major protein bands to cytochrome P-450 and cytochrome b5, components of the endoplasmic reticulum, thought to be involved in the mixed-function oxidase system. The evidence indicated that in fetal liver, at a time when the oxidase capability was low, the amino acid incorporation into these two protein groups was the same as in the adult. The incorporation of the heme moiety, however, was different, decreasing in the cytochrome b5 region and increasing in the cytochrome P-450 region during development. These results correlate with the increase in oxidase activity associated with liver development.  相似文献   

19.
1. The assembly of rat liver cytochrome oxidase was studied in isolated hepatocytes and isolated liver mitochondria labelled with L-[35S]methionine. 2. Labelled subunits II and III appeared in the immunoabsorbed holoenzyme within minutes after the initiation of a pulse label. In contrast, labelled subunit I appeared in immunoabsorbed holoenzyme only after a subsequent 2 h chase or after an additional 2 h of labelling. Subunit I was heavily labelled, however, in intact mitochondria after 10 min. 3. A similar pattern of labelling was observed in holo-cytochrome oxidase which was chemically isolated by a small scale procedure adapted for this purpose. The appearance of subunit I in the holoenzyme was delayed for 1.5-2 h after a 60 min pulse with labelled methionine. 4. Incubation of hepatocytes for 4 h in the presence of cycloheximide had no effect on the labelling pattern described above. 5. Methods were developed in which newly translated, presumably unassembled, subunits of cytochrome oxidase could be separated from the holoenzyme by fractionation in Triton X-114. Short-term pulse experiments indicate that subunits II and III are associated with the holoenzyme fraction immediately after their completion, whereas subunit I is not. 6. The data are consistent with a model in which cytochrome oxidase assembly is viewed as an ordered and sequential event.  相似文献   

20.
We obtained cDNA clones for cytochrome oxidase subunits IV, V, VI, and possibly VII by constructing a lambda gt11 library of Neurospora crassa cDNA and probing it with antiserum directed against Neurospora cytochrome oxidase holoenzyme. Positive clones were further characterized with antisera directed against individual cytochrome oxidase subunits and subsequently by DNA sequencing. The clones for subunits IV and V encode proteins with regions matching the known N-terminal amino acid sequences of purified Neurospora cytochrome oxidase subunits IV and V, respectively. The sequences of these clones provide the first evidence that cytochrome oxidase subunits IV and V are made as precursors with N-terminal extensions in Neurospora. The N-terminal extensions encoded by these clones share homology, and are rich in arginine, as are signal sequences of other mitochondrially destined proteins. The subunit VI clone codes for the carboxyl terminus of a protein homologous to the carboxy termini of yeast cytochrome oxidase subunit VI and bovine cytochrome oxidase subunit Va. The subunit VII clone contains an open reading frame for a 47-residue protein, the expected size for subunit VII. However, the protein coded by this clone has an unusual amino acid composition. Whether this clone represents an authentic cytochrome oxidase subunit is not established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号