首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calbindin-D28K was immunohistochemically localized in myenteric and submucosal plexuses throughout the rat intestine. Calbindin-D28K immunoreactivity was found in about half of myenteric neurons and in more than 90% of submucosal neurons. Calbindin-D28K was also observed in nerve processes running inside ganglia, muscle layers and lamina propria. No correlation could be established between the presence of calbindin-D28K and the distribution of neuropeptides localized in this study (VIP, enkephalin, somatostatin and substance P). In addition, some endocrine-like cells of the ileum were calbindin-D28K-positive. Half of these endocrine cells also contained neurotensin but none of the other neuropeptides investigated.  相似文献   

2.
Neuronal systems for calcium homeostasis are crucial for neuronal development and function and may also contribute to selective neuronal vulnerability in adverse conditions such as exposure to excitatory amino acids or anoxia, and in neurodegenerative diseases. Previous work demonstrated the presence and differential distribution of calcium-binding proteins in the CNS. We now report that a subpopulation of neurons in dissociated cell cultures of embryonic rat hippocampus expresses calbindin-D28k (Mr 28,000 calcium-binding protein) immunoreactivity and that these neurons are relatively resistant to neurotoxicity induced by either glutamate or calcium ionophore. Direct comparisons of dynamic aspects of intracellular calcium levels and calbindin-D28k immunoreactivity in the same neurons revealed that calbindin-D28k-positive neurons were better able to reduce free intracellular calcium levels than calbindin-D28k-negative neurons. These findings indicate that the differential expression of calbindin-D28k in hippocampal neurons occurs early in development and may be one determinant of selective neuronal vulnerability to excitotoxic insults.  相似文献   

3.
We have used a double-labeling immunofluorescence method to examine whether oxytocin-containing magnocellular neurons possess a calcium-binding protein, calbindin-D28k, in the hypothalamus of the rat. In the supraoptic nucleus, most oxytocin-immunoreactive cells were also stained for calbindin-D28k. However, in the magnocellular part of the paraventricular nucleus nearly all oxytocin-labeled cells were devoid of calbindin-D28k. In the anterior commissural nucleus, approximately one-third of oxytocin-stained cells were also calbindin-D28k-immunoreactive, but the other cells were negative for calbindin-D28k. This study indicates that there may be distinct chemical features between oxytocin-containing magnocellular neurons of the supraoptic nucleus compared to those of the paraventricular nucleus.  相似文献   

4.
ROR alpha is an orphan nuclear receptor. A deletion mutation in the ROR alpha gene leads to severe cerebellar defects, known as the staggerer mutant mouse. Although previous in situ hybridization (ISH) studies have shown that ROR alpha is highly expressed in the cerebellum, especially in Purkinje cells, and in the thalamus, sufficient immunohistochemical (IHC) study has not yet been presented. I demonstrate here the IHC analysis of ROR alpha using a specific anti-ROR alpha antibody, in adult and developing mouse nervous system. ROR alpha immunoreactivity was observed in the Purkinje cell and molecular layers of the cerebellum. The co-localization of ROR alpha with calbindin D(28K) (CaBP) and parvalbumin indicates that ROR alpha-positive cells were Purkinje cells, stellate cells, and basket cells. In addition to the cerebellum, strong to medium ROR alpha immunoreactivity was found in the thalamus, cerebral cortex (mainly in the layer IV), dorsal cochlear nucleus (DCN), suprachiasmatic nucleus (SCN), superior colliculus, spinal trigeminal nucleus, and retina. The immunostaining was restricted in nuclei of neurons. Developmentally, ROR alpha immunoreactivity was observed in the cerebellum and thalamus from embryonal day 16 (E16). The distribution of ROR alpha immunoreactivity and ROR alpha mRNA hybridization signal was almost coincident. However, the intensity of hybridization signal was not always parallel to that of immunoreactivity.  相似文献   

5.
B/K protein is a recently isolated member of the double C2-like-domain protein family, which is highly abundant in rat brain. We generated high-titer rabbit polyclonal antibodies with specificity to the 55-kDa rat B/K protein, and examined the expression pattern of B/K protein in rat brain using an immunohistochemical staining method. Immunoreactivity to B/K protein was widely found in distinct regions of rat brain: strongly in the hypothalamus, most of the circumventricular organs, the locus coeruleus, the A5 neurons of the pons, and the anterior pituitary; moderately in the anterior olfactory nucleus, the raphe nucleus, the subfornical organ, and the median eminence; and faintly in the olfactory bulb, the telencephalon, the substantia nigra pars compacta, and the ventral tegmental area. In contrast, immunoreactivity to B/K protein was not observed in the thalamus, the cerebellum, the posterior pituitary, or the spinal cord. In most of the B/K-expressing neurons, immunoreactivity was expressed mainly in soma but not in nerve fibers. B/K was also expressed in nonneuronal cells such as the tanycytes and the subcommissural organ. In the vasopressin-secreting supraoptic and paraventricular nuclei of the hypothalamus, the site where B/K cDNA was originally isolated from, all of the neurons showing vasopressin immunoreactivity also expressed B/K protein, suggesting an overlap of their expression patterns.  相似文献   

6.
Calbindin antibodies have been used in neuroanatomical studies to give excellent cytoarchitecural staining and visualization of a Golgi-like cellular morphology. Calbindin-D28K immunoreactivity used in rat pineal gland as a marker detected two classes of pineal cells. One class of small cells representing exclusively glial cells was strongly immunoreactive, and presented a large variety of individual shapes. The majority were a pyramidal shape with one or more processes while others displayed a cytoplasmic lipid droplet. Some small cells occurred around pericapillary spaces. The second class of calbindin-D28K positive cells corresponding to type II pinealocytes were characterized by their large size and less intensive labelling. Type II pinealocytes were round or rectangular; the nucleus was infolded and large with a prominent nucleolus. These large cells were preferentially distributed in the vicinity of vessels and assembled in a cluster of more than ten cells. The lack of S-100 and myeloperoxidase immunoreactivities in large calbindin-D28K cells excluded their possible characterization as glial cells and mononuclear phagocytes, while their size (>15 m) excluded microglial cells. A sex difference was detected between large calbindin-D28K positive cells. The mean calculated number of large positive cells for males was 6361±1504 (n=8) compared to 2162±1235 (n=7) for females. No significative difference was detected between males and females for small calbindin-D28K positive cells.  相似文献   

7.
The proteins calbindin-D(28K) and calretinin buffer intracellular calcium and are speculated to be involved in the integration of neuronal signaling. Using Western blot analysis, we compared the levels of calbindin-D(28K) and calretinin in the developing male and female rat hypothalamus on postnatal days (PN) 0, PN2, PN4, PN6, PN8, and PN10. Analysis of variance (ANOVA) of mean calbindin levels indicated a significant effect of sex (p 相似文献   

8.
Mutations in the DJ-1 gene have been identified to cause Parkinson's disease. In humans, nonmutated DJ-1 is expressed in specific brain areas but seems to be expressed by astrocytes rather than by neurons. In contrast, DJ-1 mRNA is mainly found in neurons in the mouse brain. We have investigated the distribution of DJ-1 protein in the mouse brain and found that DJ-1 protein is predominantly expressed by neurons but can also be detected in astrocytes. Consistent with a global role of DJ-1 in the brain, we found immunoreactivity, for example, in cortical areas, hippocampus, basolateral amygdala, the reticular nucleus of the thalamus, zona incerta, and locus coeruleus. Within the substantia nigra, however, DJ-1 is localized in both neuronal and nonneuronal cells, suggesting a distinct role in this area.  相似文献   

9.
Antarctic notothenioids have developed unique freezing-resistance adaptations, including brain diversification, to survive in the subzero waters of the Southern Ocean surrounding Antarctica. In this study we have investigated the anatomical distribution of neuropeptide tyrosine (NPY)-like immunoreactive elements in the brain of the Antarctic fish Trematomus bernacchii, by using an antiserum raised against porcine NPY. Perikarya exhibiting NPY-like immunoreactivity were observed in distinct regions of the brain. The most rostral group of immunoreactive perikarya was found in the telencephalon, within the entopeduncular nucleus. In the diencephalon, three groups of NPY-like immunoreactive perikarya were found in the hypothalamus. Two groups of positive cell bodies were found in distinct populations of the preoptic nucleus, whereas the other group was found in the nucleus of the lateral recess. More caudally, NPY immunoreactivity was detected in large neurons located in the subependymal layers of the dorsal tegmentum of the mesencephalon, medially to the torus semicircularis. NPY-like immunoreactive nerve fibres were more widely distributed throughout the telencephalon to the rhombencephalon. High densities of nerve fibres and terminals were observed in several regions of the telencephalon, olfactory bulbs, hypothalamus, tectum of the mesencephalon and in the ventral tegmentum of the rhombencephalon. The distribution of NPY-like immunoreactive structures suggests that, in Trematomus, this peptide may be involved in the control of several brain functions, including olfactory activity, feeding behaviour, and somatosensory and visual information. In comparison with other neuropeptides previously described in the brain of Antarctic fish, NPY is more widely distributed. Our data also indicate the existence of differences in the brain distribution of NPY between Trematomus and other teleosts. In contrast with previous results reported in other fish, Trematomus contains positive fibres in the olfactory bulbs and immunoreactive perikarya in the nucleus of the lateral recess, whereas NPY-immunopositive cell bodies are absent in the thalamus and rhombencephalon, and no NPY immunoreactivity is present in the pituitary. These differences could be related to the Antarctic ecological diversity of notothenioids living at subzero temperatures.  相似文献   

10.
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain.  相似文献   

11.
Calbindin-D28K is a constitutive Ca2(+)-binding protein expressed in hippocampal neurons that are resistant to various forms of excitotoxic injury. However, the local factors controlling calbindin-D28K expression within the central nervous system are unknown. We report that neuronal excitation via the perforant path leads to an increased expression of calbindin-D28K mRNA within dentate granule cells. This response is related specifically to stimulation that induces prolonged periods of bursting afterdischarges and precedes cellular injury. The up regulation of calbindin-D28K mRNA occurs during the type of neuronal activation associated with elevated cytosolic Ca2+ and suggests that the maintenance of Ca2+ homeostasis includes a system of feedback control at the level of gene expression.  相似文献   

12.
The distribution of calbindin D-28K (CaBP28K) cell bodies and fibers in the nucleus pretectalis superficialis parvicellularis of the rainbow trout was studied using a monoclonal antibody and the avidin-biotin-peroxidase method. In this diencephalic nucleus a very high density of CaBP28K immunoreactive fibers was found. In addition, a high density of CaBP28K positive neurons was also observed. These neurons were small, showing one, two or three short and non-branching dendritic trunks. The distribution and orientation of the immunoreactive cell bodies in the nucleus pretectalis superficialis parvicellularis suggests that the neurons might be interneurons and/or projecting neurons.  相似文献   

13.
Reelin, a large glycoprotein defective in reeler mice, is assumed to determine the final location of migrating neurons in the developing brain. We studied the expression of Reelin in the brain of adult male European starlings that had been treated or not with exogenous testosterone. Reelin-immunoreactive cells and fibers were widely distributed in the forebrain including areas in and around the song control nucleus, HVC. No labeling was detected in other song control nuclei with the exception of nucleus uvaeformis, which was delineated by a dense cluster of Reelin-immunoreactive perikarya. Reelin is thus expressed in areas incorporating new neurons in adulthood, such as HVC. Reelin expression was sharply decreased by testosterone in HVC, nucleus uvaeformis and dorsal thalamus but not in other brain regions. These results are consistent with the idea that seasonal changes in Reelin expression modulate the incorporation of neurons within HVC. The presence of Reelin in other brain areas that do not incorporate new neurons in adulthood indicates, however, that this protein must play other unrelated roles in the adult brain. Additional studies should now be carried out to determine the specific role played by this protein in the seasonal plasticity of the songbird brain.  相似文献   

14.
15.
16.
目的 观察鸡脊髓背角胶状质中calbindin-D28k(CB)阳性终末的超微结构及其与含有substance P(SP)中央末梢之间的联系.方法 应用免疫电镜技术观察鸡脊髓背角胶状质中CB阳性终末的超微结构,并应用激光共聚焦显微镜观察鸡脊髓背角胶状质中CB和SP阳性突触小球中央末梢之间的关系.结果 电镜下观察:1)突触小球中含有心小泡的中央末梢呈CB免疫阳性;2)突触小球内或外的部分含小泡的树突呈CB免疫阳性;以及3)突触小球外的部分轴突呈CB免疫阳性.在突触结构内,CB免疫阳性反应物主要分布于突触后膜上.免疫荧光双标记法显示,SP阳性的含有心小泡的中央末梢呈CB阳性.结论 突触小球的中央末梢中CB与SP共存,提示CB可能通过其钙离子缓冲作用,参与脊髓的痛觉调制.  相似文献   

17.
Summary The distribution of gamma-aminobutyric acid (GABA) immunoreactivity was studied in the forebrain (tel-and diencephalon) of the goldfish by means of immunocytochemistry on Vibratome sections using antibodies against GABA. Positive perikarya were detected in the olfactory bulbs and in all divisions of the telencephalon, the highest density being found along the midline. In the diencephalon, GABA-containing cell bodies were found in the hypothalamus, in particular in the preoptic and tuberal regions. The inferior lobes, the nucleus recessus lateralis, and more laterodorsal regions, such as the nucleus glomerulosus and surrounding structures, also exhibited numerous GABA-positive perikarya. Cell bodies were also noted in the thalamus, in particular in the dorsomedial, dorsolateral and ventromedial nuclei. The relative density of immunoreactive fibers was evaluated for each brain nucleus and classified into five categories. This ubiquitous distribution indicates that, as in higher vertebrates, GABA most probably represents one of the major neurotransmitters in the brain of teleosts.  相似文献   

18.
Using polyclonal antibody against dopamine D4 receptor we investigated cortical distribution of D4 receptors, with the special emphasis on regions of the prefrontal cortex. Prefrontal cortex is regarded as a target for neuroleptic drugs, and engaged in the regulation of the psychotic effects of various substances used in the experimental modeling of schizophrenia. Western blot analysis performed on samples from the rat cingulate, parietal, piriform cortices and also striatum revealed that antibody recognized one main band of approximately 40 kD, which corresponds to the predicted molecular weight of D4 receptor protein. In immunocytochemical studies we found D4 receptor-positive neurons in all regions of prefrontal cortex (cingulate, agranular/insular and orbital cortices) and all cortical regions adjacent to prefrontal cortex, such as frontal, parietal and piriform cortex. Substantial number of D4 receptor-positive neurons has also been observed within the striatum and nucleus accumbens. In general, a clear stratification of the D4 receptor-positive neurons was observed in the cortex with the highest density seen in layers II/III and V/VI. D4 immunopositive material was also found in the dendritic processes, particularly clearly visible in the layer II/III. At the cellular level D4 receptor immunoreactivity was seen predominantly on the periphery of the cell body, but a certain population of neurons with clear cytoplasmatic localization was also identified. In addition to cortical distribution of D4 receptor-positive neurons we tried also to define types of neurons expressing D4 receptor protein. In double-labeling experiments, D4 receptor protein was found in nonphosphorylated neurofilament H-positive, calbindin-D28k-positive, as well as parvalbumin-positive cells. Since, used proteins are markers of certain populations of pyramidal neurons and GABA-ergic interneurons, respectively, our data indicate that D4 receptors are located on cortical pyramidal output neurons and their dendritic processes as well as on interneurons. Above localization indicates that D4 receptors are not only directly influencing excitability of cortical inter- and output neurons but also might be engaged in dendritic spatial and temporal integration, required for the generation of axonal messages. Additionally, our data show that D4 receptors are widely distributed throughout the cortex of rat brain, and that their cortical localization exceeds the localization of dopaminergic terminals.  相似文献   

19.
Immunofluorescence histochemical double-staining for preproenkephalin (PPE) and calbindin-D28k (CB), calretinin (CR) or parvalbumin (PV) were performed in the spinal trigeminal nucleus caudalis (Vc) of the rat. Neuronal cell bodies exhibiting PPE-like immunoreactivity were present in all laminae of the Vc, with a higher concentration in lamina II. Most of the CB-, CR- and PV-like immunoreactive neurons were located in lamina II, and some of them were also found in laminae I and III of the Vc. Some PPE-like immunoreactive neurons also showed CB-, CR-, or PV-like immunoreactivities. CB/PPE, CR/PPE and PV/PPE double-labelled neurons were mainly observed in lamina II. The percentages of CB/PPE double-labelled neurons in the total numbers of the CB- and PPE-like immunoreactive neurons were 3.5–1.5% and 3.3–15.7%, respectively. Of all CR- and PPE-like immunoreactive neurons, 4.7–13.5% and 3.7–14.2% showed both CR- and PPE-like immunoreactivities. The ratios of PV/PPE double-labelled neurons in all PV- and PPE-like immunoreactive neurons were 9.7–28.1% and 2.1–8.7%, respectively. The present results indicate that some enkephalinergic neurons in the Vc of the rat also contain calcium-binding proteins.  相似文献   

20.
Analysis of rat vitamin D-dependent calbindin-D28k gene expression   总被引:7,自引:0,他引:7  
We report the use of a cloned cDNA for mammalian calbindin-D28k (28-kDa vitamin D-dependent calcium-binding protein) to study the expression of the rat calbindin gene. Tissue distribution studies, using Northern analysis, indicated that calbindin-D28k-mRNA is detected in rat kidney and brain but is not detected in rat intestine, testes, bone, pancreas, liver, lung, or skeletal muscle. Both rat kidney and brain contain three RNA species (1.9, 2.8, and 3.2 kilobase pairs). The regulation of the gene was characterized by both Northern and slot blot analysis. Hormonal regulation, developmental expression of calbindin-D28k-mRNA, and the effect of dietary alteration were examined. In the kidney all three species of mRNA were dependent on the presence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) for their induction. The time course of induction of renal calbindin-D28k-mRNA indicated that a significant increase in calbindin-D-mRNA was detectable as early as 2 h following a single injection of 1,25-(OH)2D3 (200 ng/100 g of body weight), reaching a maximum at 12 h. Unlike the kidney high levels of calbindin-D28k-mRNA were observed in the brain of vitamin D-deficient rats. The concentration of calbindin-D28k-mRNA in brain was unchanged after 1,25-(OH)2D3 administration. Developmental studies indicated that calbindin-D-mRNA in rat kidney and brain is present prior to birth but is developmentally regulated in a tissue-specific manner. The most pronounced changes in the abundance of renal calbindin-D28k-mRNA occur between birth and 1 week of age. Unlike the kidney a large increase in brain calbindin-D28k-mRNA occurs at a later time, between 1 and 2 weeks of age (the period of major synapse formation). In dietary alteration studies results of Northern blot analysis indicate that low dietary phosphorus results in increased calbindin-D-mRNA in kidney but not in brain. These studies represent the first analysis of the rat calbindin-D28k gene and its regulation in vivo. Our findings suggest that in rat kidney and brain there are significant differences both in the expression of the gene for calbindin-D28k and its regulation by 1,25-(OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号