首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic carboxypeptidase 5 (CCP5) is a member of a subfamily of enzymes that cleave C-terminal and/or side chain amino acids from tubulin. CCP5 was proposed to selectively cleave the branch point of glutamylated tubulin, based on studies involving overexpression of CCP5 in cell lines and detection of tubulin forms with antisera. In the present study, we examined the activity of purified CCP5 toward synthetic peptides as well as soluble α- and β-tubulin and paclitaxel-stabilized microtubules using a combination of antisera and mass spectrometry to detect the products. Mouse CCP5 removes multiple glutamate residues and the branch point glutamate from the side chains of porcine brain α- and β-tubulin. In addition, CCP5 excised C-terminal glutamates from detyrosinated α-tubulin. The enzyme also removed multiple glutamate residues from side chains and C termini of paclitaxel-stabilized microtubules. CCP5 both shortens and removes side chain glutamates from synthetic peptides corresponding to the C-terminal region of β3-tubulin, whereas cytosolic carboxypeptidase 1 shortens the side chain without cleaving the peptides'' γ-linked residues. The rate of cleavage of α linkages by CCP5 is considerably slower than that of removal of a single γ-linked glutamate residue. Collectively, our data show that CCP5 functions as a dual-functional deglutamylase cleaving both α- and γ-linked glutamate from tubulin.  相似文献   

2.
γ-Tubulin is an important cell division regulator that arranges microtubule assembly and mitotic spindle formation. Cytosolic γ-tubulin nucleates α- and β-tubulin in a growing microtubule by forming the ring-shaped protein complex γTuRC. Nuclear γ-tubulin also regulates S-phase progression by moderating the activities of E2 promoter-binding factors. The mechanism that regulates localization of γ-tubulin is currently unknown. Here, we demonstrate that the human Ser/Thr kinase SadB short localizes to chromatin and centrosomes. We found that SadB-mediated phosphorylation of γ-tubulin on Ser385 formed chromatin-associated γ-tubulin complexes that moderate gene expression. In this way, the C-terminal region of γ-tubulin regulates S-phase progression. In addition, chromatin levels of γ-tubulin were decreased by the reduction of SadB levels or expression of a non-phosphorylatable Ala385-γ-tubulin but were enhanced by expression of SadB, wild-type γ-tubulin, or a phosphomimetic Asp385-γ-tubulin mutant. Our results demonstrate that SadB kinases regulate the cellular localization of γ-tubulin and thereby control S-phase progression.  相似文献   

3.
The tubulin molecule consists of an - and a β-subunit, each of which exists in several isotypic forms. It has been previously shown that one of the isotypes of neuroblastoma β-tubulin is phosphorylated at a serine residue in vivo [(1985) J. Cell Biol. 100, 764–774]. Here we identify the phosphorylated isotype as β2 (type III). Moreover, the large size of the phosphorylated tryptic peptide and sequence comparisons of vertebrate β-tubulins suggest that one of the two serines in positions 444 and 446 is the phosphorylated residue. Our results raise the possibility that β2-tubulin differs functionally from the other β-tubulin isotypes.  相似文献   

4.
The effect of light on the abundance of β-tubulin mRNA was measured in etiolated Avena sativa L. and Hordeum vulgare L. seedlings. Slot blot analysis employing an oat β-tubulin cDNA clone was used to measure β-tubulin mRNA levels. White light induced a 45% decrease in oat β-tubulin mRNA abundance by 2 hours after transfer. A saturating red light pulse induced 40 and 55% decreases in β-tubulin mRNA levels in oats and barley, respectively. Recovery of β-tubulin mRNA levels was observed after a red light pulse but not after transfer to continuous white light. The red light induced decrease in oat β-tubulin mRNA abundance was not reversible by a subsequent far-red light treatment. The mesocotyl portion of etiolated oat seedlings exhibited a more dramatic decrease in β-tubulin mRNA abundance in response to red light than did the coleoptile portion. The results indicate that the well-documented effects of red light on the growth of etiolated seedlings are accompanied by changes in the expression of the β-tubulin genes.  相似文献   

5.
Microtubules are dynamic cytoskeleton filaments that are essential for a wide range of cellular processes. They are polymerized from tubulin, a heterodimer of α- and β-subunits. Most eukaryotic organisms express multiple isotypes of α- and β-tubulin, yet their functional relevance in any organism remains largely obscure. The two α-tubulin isotypes in budding yeast, Tub1 and Tub3, are proposed to be functionally interchangeable, yet their individual functions have not been rigorously interrogated. Here, we develop otherwise isogenic yeast strains expressing single tubulin isotypes at levels comparable to total tubulin in WT cells. Using genome-wide screening, we uncover unique interactions between the isotypes and the two major mitotic spindle positioning mechanisms. We further exploit these cells to demonstrate that Tub1 and Tub3 optimize spindle positioning by differentially recruiting key components of the Dyn1- and Kar9-dependent mechanisms, respectively. Our results provide novel mechanistic insights into how tubulin isotypes allow highly conserved microtubules to function in diverse cellular processes.  相似文献   

6.
α-Tubulin acetylation at Lys-40, located on the luminal side of microtubules, has been widely studied and used as a marker for stable microtubules in the cilia and other subcellular structures, but the functional consequences remain perplexing. Recent studies have shown that Mec-17 and its paralog are responsible for α-tubulin acetylation in Caenorhabditis elegans. There is one such protein known as Atat1 (α-tubulin acetyltransferase 1) per higher organism. Zebrafish Atat1 appears to govern embryo development, raising the intriguing possibility that Atat1 is also critical for development in mammals. In addition to Atat1, three other mammalian acetyltransferases, ARD1-NAT1, ELP3, and GCN5, have been shown to acetylate α-tubulin in vitro, so an important question is how these four enzymes contribute to the acetylation in vivo. We demonstrate here that Atat1 is a major α-tubulin acetyltransferase in mice. It is widely expressed in mouse embryos and tissues. Although Atat1-null animals display no overt phenotypes, α-tubulin acetylation is lost in sperm flagella and the dentate gyrus is slightly deformed. Furthermore, human ATAT1 colocalizes on bundled microtubules with doublecortin. These results thus suggest that mouse Atat1 may regulate advanced functions such as learning and memory, thereby shedding novel light on the physiological roles of α-tubulin acetylation in mammals.  相似文献   

7.
Quantitative proteomics and absolute determination of proteins are topics of fast growing interest, since only the quantity of proteins or changes in their abundance reflect the status and extent of changes of a given biological system. Quantification of the desired proteins has been carried out by molecule specific MS techniques, but relative quantifications are commonplace so far even resorting to stable isotope labelling techniques such as ICAT and SILAC. In the last decade the idea of using element-selective mass spectrometric detection (e.g. ICP-MS instruments) to achieve absolute quantification has been realised and ICP-MS stands now as a new tool in the field of quantitative proteomics.In this review the emerging role of ICP-MS in protein and proteomic analysis is highlighted. The potential of ICP-MS methods and strategies for screening multiple heteroatoms (e.g. S, P, Se, metals) in proteins and their mixtures and extraordinary capabilities to tackle the problem of absolute protein quantifications, via heteroatom determinations, are discussed and illustrated. New avenues are also open derived from the use of ICP-MS for precise isotope abundance measurements in polyisotopic heteroatoms. The “heteroatom (isotope)-tagged proteomics” concept is focused on the use of naturally present element tags and also extended to any protein by resorting to bioconjugation reactions (i.e. labelling sought proteins and peptides with ICP-MS detectable heteroatoms). A major point of this review is displaying the possibilities of using a “hard” ion source, the ICP, to complement well-established “soft” ion sources for mass spectrometry to tackle present proteomic analysis.  相似文献   

8.
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.  相似文献   

9.
Virtually all mass spectrometric-based methods for quantitative proteomics are at the peptide level, whether label-mediated or label-free. Absolute quantification in particular is based on the measurement of limit peptides, defined as those peptides that cannot be further fragmented by the protease in use. Complete release of analyte and (stable isotope labelled) standard ensures that the most reliable quantification data are recovered, especially when the standard peptides are in a different primary sequence context, such as sometimes occurs in the QconCAT methodology. Moreover, in label-free methods, incomplete digestion would diminish the ion current attributable to limit peptides and lead to artifactually low quantification data. It follows that an essential requirement for peptide-based absolute quantification in proteomics is complete and consistent proteolysis to limit peptides. In this paper we describe strategies to assess completeness of proteolysis and discuss the potential for variance in digestion efficiency to compromise the ensuing quantification data. We examine the potential for kinetically favoured routes of proteolysis, particularly at the last stages of the digestion, to direct products into ‘dead-end’ mis-cleaved products.  相似文献   

10.
The yeast Saccharomyces cerevisiae has two genes for α-tubulin, TUB1 and TUB3, and one β-tubulin gene, TUB2. The gene product of TUB3, Tub3, represents ~10% of α-tubulin in the cell. We determined the effects of the two α-tubulin isotypes on microtubule dynamics in vitro. Tubulin was purified from wild-type and deletion strains lacking either Tub1 or Tub3, and parameters of microtubule dynamics were examined. Microtubules containing Tub3 as the only α-tubulin isotype were less dynamic than wild-type microtubules, as shown by a shrinkage rate and catastrophe frequency that were about one-third of that for wild-type microtubules. Conversely, microtubules containing Tub1 as the only α-tubulin isotype were more dynamic than wild-type microtubules, as shown by a shrinkage rate that was 50% higher and a catastrophe frequency that was 30% higher than those of wild-type microtubules. The results suggest that a role of Tub3 in budding yeast is to control microtubule dynamics.  相似文献   

11.
Centrosome-mediated microtubule nucleation is essential for spindle assembly during mitosis. Although γ-tubulin complexes have primarily been implicated in the nucleation process, details of the underlying mechanisms remain poorly understood. Here, we demonstrated that a member of the human transforming acidic coiled-coil (TACC) protein family, TACC3, plays a critical role in microtubule nucleation at the centrosome. In mitotic cells, TACC3 knockdown substantially affected the assembly of microtubules in the astral region and impaired microtubule nucleation at the centrosomes. The TACC3 depletion-induced mitotic phenotype was rescued by expression of the TACC3 C terminus predominantly consisting of the TACC domain, suggesting that the TACC domain plays an important role in microtubule assembly. Consistently, experiments with the recombinant TACC domain of TACC3 demonstrated that this domain possesses intrinsic microtubule nucleating activity. Co-immunoprecipitation and sedimentation experiments revealed that TACC3 mediates interactions with proteins of both the γ-tubulin ring complex (γ-TuRC) and the γ-tubulin small complex (γ-TuSC). Interestingly, TACC3 depletion resulted in reduced levels of γ-TuRC and increased levels of γ-TuSC, indicating that the assembly of γ-TuRC from γ-TuSC requires TACC3. Detailed analyses suggested that TACC3 facilitates the association of γ-TuSC-specific proteins with the proteins known to be involved in the assembly of γ-TuRC. Consistent with such a role for TACC3, the suppression of TACC3 disrupted localization of γ-TuRC proteins to the centrosome. Our findings reveal that TACC3 is involved in the regulation of microtubule nucleation at the centrosome and functions in the stabilization of the γ-tubulin ring complex assembly.  相似文献   

12.
In the field of proteomics there is an apparent lack of reliable methodology for quantification of posttranslational modifications. Present study offers a novel post-digest ICPL quantification strategy directed towards characterization of phosphorylated and glycosylated proteins. The value of the method is demonstrated based on the comparison of two prostate related metastatic cell lines originating from two distinct metastasis sites (PC3 and LNCaP). The method consists of protein digestion, ICPL labeling, mixing of the samples, PTM enrichment and MS-analysis. Phosphorylated peptides were isolated using TiO2, whereas the enrichment of glycosylated peptides was performed using hydrazide based chemistry. Isolated PTM peptides were analyzed along with non enriched sample using 2D-(SCX-RP)-Nano-HPLC–MS/MS instrumentation. Taken together the novel ICPL labeling method offered a significant improvement of the number of identified (∼ 600 individual proteins) and quantified proteins (> 95%) in comparison to the classical ICPL method. The results were validated using alternative protein quantification strategies as well as label-free MS quantification method. On the biological level, the comparison of PC3 and LNCaP cells has shown specific modulation of proteins implicated in the fundamental process related to metastasis dissemination. Finally, a preliminary study involving clinically relevant autopsy cases reiterated the potential biological value of the discovered proteins.  相似文献   

13.
Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and β-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three β-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of β-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.  相似文献   

14.
Tubulin Isotypes in Rye Roots Are Altered during Cold Acclimation   总被引:7,自引:4,他引:3       下载免费PDF全文
The cold stability of cortical microtubules in root-tip cells of winter rye (Secale cereale L. cv Puma) is altered by growth temperature (GP Kerr, JV Carter [1990] Plant Physiol 93:77-82). One hypothesis for the basis of this alteration is that different tubulin isotypes are present at different growth temperatures, and that the cold stability of microtubules is affected by these isotypic differences. We have explored the first part of this hypothesis by comparing protein extracts from roots of seedlings grown for 2 days at 22°C (nonacclimated) or for an additional 2 or 4 days at 4°C (cold-acclimated). Immunoblots of two-dimensional polyacrylamide gels were probed with monoclonal antibodies to α- and β-tubulin. At least six α- and seven β-tubulins were present in the extracts from both the nonacclimated and cold-acclimated roots. Changes in electrophoretic mobility and isotype number of both α- and β-tubulin were observed after only 2 days at 4°C. Further changes in tubulin were observed after 4 days at 4°C. Changes in α-tubulin were more pronounced than those in β-tubulin.  相似文献   

15.
Highly conserved regions are attractive targets for detection and quantitation by PCR, but designing species-specific primer sets can be difficult. Ultimately, almost all primer sets are designed based upon literature searches in public domain databases, such as the National Center for Biotechnology Information (NCBI). Prudence suggests that the researcher needs to evaluate as many sequences as available for designing species-specific PCR primers. In this report, we aligned 11, 9, and 16 DNA sequences entered for Stachybotrys spp. rRNA, tri5, and β-tubulin regions, respectively. Although we were able to align and determine consensus primer sets for the 9 tri5 and the 16 β-tubulin sequences, there was no consensus sequence that could be derived from alignment of the 11 rRNA sequences. However, by judicious clustering of the sequences that aligned well, we were able to design three sets of primers for the rRNA region of S. chartarum. The two primer sets for tri5 and β-tubulin produced satisfactory PCR results for all four strains of S. chartarum used in this study whereas only one rRNA primer set of three produced similar satisfactory results. Ultimately, we were able to show that rRNA copy number is approximately 2-log greater than for tri5 and β-tubulin in the four strains of S. chartarum tested.  相似文献   

16.
Here we present a matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI–TOF/TOF)-based label-free relative protein quantification strategy that involves sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) separation of proteins followed by in-gel trypsin digestion. The main problem encountered in gel-based protein quantification is the difficulty in achieving complete and consistent proteolytic digestion. To solve this problem, we developed a high-pressure-assisted in-gel trypsin digestion method that is based on pressure cycling technology (PCT). The PCT approach performed at least as well as the conventional overnight in-gel trypsin digestion approach in parameters such as number of peaks detected, number of peptides identified, and sequence coverage, and the digestion time was reduced to 45 min. The gel/mass spectrometry (MS)-based label-free protein quantification method presented in this work proved the applicability of the signal response factor concept for relative protein quantification previously demonstrated by other groups using the liquid chromatography (LC)/MS platform. By normalizing the average signal intensities of the three most intense peptides of each protein with the average intensities of spiked synthetic catalase tryptic peptides, which we used as an internal standard, we observed spot-to-spot and lane-to-lane coefficients of variation of less than 10 and 20%, respectively. We also demonstrated that the method can be used for determining the relative quantities of proteins comigrating during electrophoretic separation.  相似文献   

17.
Tubulin, the structural subunit of microtubules, is the target of some highly successful anti-tumor drugs. Most of these drugs bind to the β-tubulin resulting in the inhibition of microtubule dynamics and eventually cell death. The varied cellular distribution of several human isotypes of β -tubulin provides a platform upon which to construct novel chemotherapeutic agents that are able to differentiate between these types of cells. To test this hypothesis, we have previously created homology models of the nine most frequently observed human β -tubulin isotypes and analyzed them for differences in the colchicine-binding site. Here, we describe the electrostatic properties of the colchicine binding site and how this may affect calculated drug binding affinities between the β -tubulin isotypes.  相似文献   

18.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

19.
Trihexyphenidyl, biperiden and procyclidine are anticholinergic drugs produced as racemates for the treatment of Parkinson’s disease. This paper describes a simple and sensitive LC–MS method for the simultaneous determination of these compounds in human serum. An on-line sample clean-up procedure was used, where serum samples were directly injected into a “restricted-access media” pre-column. After the exclusion of the serum proteins, the drug molecules were eluted to a β-cyclodextrin analytical column for chiral separation. The quantitation was done by electrospray ionization MS using diphenidol as an internal standard. The method developed has limits of detection of 1 ng/ml, at least two-orders-of-magnitude linear dynamic ranges (r>0.999), and RSDs of less than 10%. The system can be completely automated for increased sample throughput and unattended analyses.  相似文献   

20.
The cluster of alternated - and β-tubulin genes in the genome of Trypanosoma cruzi was shown to be transcribed into a single RNA molecule which upon processing gives rise to the mature - and β-tubulin mRNAs. This conclusion was based on: (i) nuclear RNA species with the same molecular mass hybridize to both - and β-tubulin cDNA probes; (ii) S1 nuclease assay of the clustered tubulin genes has shown protected DNA fragments of the same size and of greater molecular mass than that corresponding to the mRNAs, hybridizable to both - and β-tubulin cDNA probes; (iii) β-tubulin hybrid selected RNA is still able to hybridize to -tubulin probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号