首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Crude oil stream from the Pembina fields of North Central Alberta, Canada, contained a relatively high detectable load of bacteria. The oil and produced water contained aerobic and anerobic microorganisms capable of producing sulphides from sulphates and sulphite, and ferrous ions from ferric compounds. The ability to produce S2- and Fe(II) in solution is considered very important in corrosion phenomenon in the pipeline system.Apart from SO 4 2- — reducers (Desulfovibrio spp) the organisms found in the crude oil system and capable of generating corrosive environment were mainly members of the Genus Pseudomonas.  相似文献   

2.
The kinetics of acetate uptake and the depth distribution of [2-14C]acetate metabolism were examined in iron-rich sediments from a beaver impoundment in northcentral Alabama. The half-saturation constant (Km) determined for acetate uptake in slurries of Fe(III)-reducing sediment (0.8 µM) was more than 10-fold lower than that measured in methanogenic slurries (12 µM) which supported comparable rates of bulk organic carbon metabolism and Vmax values for acetate uptake. The endogenous acetate concentration (S n) was also substantially lower (1.7 µM) in Fe(III)-reducing vs methanogenic (9.0 µM) slurries. The proportion of [2-14C]acetate converted to 14CH4 increased with depth from ca 0.1 in the upper 0.5 cm to ca 0.8 below 2 cm and was inversely correlated (r2 = 0.99) to a decline in amorphous Fe(III) oxide concentration. The results of the acetate uptake kinetics experiments suggest that differences in the affinity of Fe(III)-reducing bacteria vs methanogens for acetate can account for the preferential conversion of [2-14C]acetate to 14CO2 in Fe(III) oxide-rich surface sediments, and that the downcore increase in conversion of [2-14C]acetate to 14CH4 can be attributed to progressive liberation of methanogens from competition with Fe(III) reducers as Fe(III) oxides are depleted with depth.  相似文献   

3.
Magnetic Circular dichroism (MCD) spectra were obtained for bis(o-xylyl-dithiolato)ferrate(III) ([Fe(S2-o-xylyl)2]) and bis[o-xylyl-dithiolato-μ2-sulfidoferrate(III)] ([Fe2S*2(S2-o-xylyl)2]2−) ions. The MCD magnitude of the dimeric [Fe2S*2(S2-o-xylyl)2]2− ion was found to be only one half of that for the monomeric [Fe(S2-o-xylyl)2] ion. The difference in MCD magnitudes was attributed to the change in the thermal populations of ground state sublevels derived from the magnetic exchange interaction.  相似文献   

4.
Evidence that thio- or oxythiomolybdates may be involved in the inhibitory action of Mo upon Cu metabolism is considered briefly. There are indications that structurally related polymeric derivatives rather than free monomeric (MoOnS4-n)2- species may be involved. Claims that pH adjustment of an aqueous solution of (MoS4)2- yields the polymeric derivatives (Mo2S7)2-, (Mo4S13)2-, or (Mo4S15)6- could not be substantiated. The composition and spectral characteristics of (NMe4) derivatives of products formed within the pH range 4.8–7.3 indicated the persistence of (MoS4)2-. More acid solutions yielded MoS3; traces of (MoOS3)2- formed in 2 M NaOH. Studies of the reaction between (MoS4)2- and Fe(III) salen confirmed the formation of a binuclear complex {(salen)Fe}Mo2S7{Fe(salen)} and indicated that the product retains a strong affinity for Cu. Analogous reactions with (MoOS3)2- or (MoO2S2)2- also yielded binuclear Fe-complexes but which involved only the monomeric Mo-containing species as bridging ligand. Differences in infrared spectra and in the affinity of the products for Cu(II) indicated the preferential formation of thio- rather than oxo-bridged complexes. The physiological implications of these findings are considered.  相似文献   

5.
Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum, Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+→SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O→SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.  相似文献   

6.
A field isolate of Desulfovibrio desulfuricans was grown in defined medium in a two-stage continuous culture apparatus with different concentrations of phosphate in the feed medium. The first state (V1) was operated as a conventional chemostat (D = 0.045 h−1) that was limited in energy source (lactate) or phosphate. The second stage (V2) received effluent from V1 but no additional nutrients, and contained a healthy population of transiently starved or resting cells. An increase in the concentration of phosphate in the medium fed to V1 resulted in increased corrosion rates of carbon steel in both V1 and V2. Despite the more rapid corrosion observed in growing cultures relative to that in resting cultures, corrosion products that were isolated under strictly anaerobic conditions from the two culture modes had similar bulk compositions which varied with the phosphate content of the medium. Crystalline mackinawite (Fe9S8), vivianite [Fe3(PO4)2 · 8H2O], and goethite [FeO(OH)] were detected in amounts which varied with the culture conditions. Chemical analyses indicated that the S in the corrosion product was almost exclusively in the form of sulfides, while the P was present both as phosphate and as unidentified components, possibly reduced P species. Some differential localization of S and P was observed in intact corrosion products. Cells from lactate-limited, but not from phosphate-limited, cultures contained intracellular granules that were enriched in P and Fe. The results are discussed in terms of several proposed mechanisms of microbiologically influenced corrosion.  相似文献   

7.
Abstract

Zofenopril as an ACE inhibitor expired recently was found to have a favourable safety profile in comparison with other ACE inhibitors in treating high blood pressure, congestive heart failure, and acute myocardial infarction. It can be synthesised from the key building blocks of (S)-3-benzoylthio-2-methylpropanoic acid and (4S)-phenylthio-L-proline. In this report, an efficient hydrolytic resolution via Candida antarctic lipase B (CALB) for preparing the former block in isopropyl ether (IPE) containing (RS)-3-benzoylthio-2-methylpropyl pyrazolide (1) and water was developed. Quantitative improvements of the enzyme activity and enantioselectivity in terms of k2SKmS?1?=?5.726?L h?1 g?1 and E?=?217 at 45?°C were found from the kinetic analysis. Insights into the CALB performance via thermodynamic analysis were then addressed and compared with those by using (RS)-3-benzoylthio-2-methylpropyl 1,2,4-triazolide (2) as the substrate. A putative thermodynamic model was moreover hypothesised for elucidating the more enthalpy reduction of 68.92-70.86?kJ mol?1 from the acyl part of (S)-1 and (S)-2 as well as that of 23.69-25.63?kJ mol?1 from the triad imidazolium to Ser105 and leaving 1,2,4-triazole moiety of (R)-2 and (S)-2 on stabilising the corresponding transition states.  相似文献   

8.
A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.  相似文献   

9.
The anion azide, N3 -, has been previously found to be an inhibitor of oxygen evolution by Photosystem II (PS II) of higher plants. With respect to chloride activation, azide acts primarily as a competitive inhibitor but uncompetitive inhibition also occurs [Haddy A, Hatchell JA, Kimel RA and Thomas R (1999) Biochemistry 38: 6104–6110]. In this study, the effects of azide on PS II-enriched thylakoid membranes were characterized by electron paramagnetic resonance (EPR) spectroscopy. Azide showed two distinguishable effects on the S2 state EPR signals. In the presence of chloride, which prevented competitive binding, azide suppressed the formation of the multiline and g = 4.1 signals concurrently, indicating that the normal S2 state was not reached. Signal suppression showed an azide concentration dependence that correlated with the fraction of PS II centers calculated to bind azide at the uncompetitive site, based on the previously determined inhibition constant. No evidence was found for an effect of azide on the Fe(II)QA - signals at the concentrations used. This result is consistent with placement of the uncompetitive site on the donor side of PS II as suggested in the previous study. In chloride-depleted PS II-enriched membranes azide and fluoride showed similar effects on the S2 state EPR signals, including a notable increase and narrowing of the g = 4.1 signal. Comparable effects of other anions have been described previously and apparently take place through the chloride-competitive site. The two azide binding sites described here correlate with the results of other studies of Lewis base inhibitors.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50–90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.  相似文献   

11.
Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.  相似文献   

12.
The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3-2H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3-2H]leucine and loss of deuterium from (3R)-[3-2H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5-2H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.  相似文献   

13.
The photobromination of 1,5-anhydro-2,3-O-isopropylidene-β-d-ribofuranose gave the corresponding (5S)-5-bromo compound. The reduction of the bromide with triphenyltindeuteride gave (5S)-(5-2H1)-1,5-anhydro-2,3-O-isopropylidene-β-d-ribofuranose, with a chiral purity of 76% at C-5, which was converted to (5R)- and (5S)-(5-2H1)-d-riboses and other ribofuranose derivatives.  相似文献   

14.
Three LNA-based mercaptoacetamido-linked nonionic nucleoside dimers TL-S-T, T-S-TL , and TL-S-TL have been synthesized by HOBT and HBTU catalyzed condensation of silyl-protected 2-S-(thymidin-5?′-yl)mercaptoacetic acid or 2-S-(2?′-O,4?′-C-methylenethymidin-5?′-yl)mercaptoacetic acid with 3?′-amino-3?′-deoxy-5?′-O-DMT-2?′-O,4?′-C-methylenethymidine or with 3?′-amino-3?′-deoxy-5?′-O-DMT-β-thymidine followed by desilylation of the protected dimers. The 3?′-O-phosphoramidite derivative of one of the nucleoside dimers was successfully prepared by condensation with [P(-Cl)(-OCH2CH2CN)-N(iPr)2}] in DCM in the presence of N,N-diisopropylethylamine (DIPEA), which is a building block for the preparation of mercaptoacetamido-linked oligonucleotides of therapeutic applications.  相似文献   

15.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

16.
Lupins appear to be more sensitive than peas to Fe deficiency. However, when grown in nutrient solutions between pH 5–6, little difference existed between them in their ability to acidify the solution or to release FeIII reducing compounds. This experiment was aimed at determining whether differences between species which occurred when Fe deficiency was induced by withholding Fe from an acid solution, are maintained when Fe deficiency is induced by addition of HCO3 -. Lupins and peas were grown in nutrient solutions at 0, 2 and 6 μM of FeIII EDDHA and either with or without HCO3 - (6 mM). Bicarbonate induced symptoms of Fe deficiency (chlorosis) in both lupins and peas, and markedly decreased the growth of shoots. Symptoms appeared sooner and were more severe in lupins than in peas. Growing plants without HCO3 -, but at the lowest Fe level, decreased the growth and Fe concentration of shoots of lupins but did not induce chlorosis. Growing peas in this treatment, decreased Fe concentrations, but to a lesser extent than in lupins, and did not decrease growth. H+-ion extrusion and release of FeIII reducing compounds was greater in lupins than in peas. Bicarbonate also decreased the growth of roots of lupins but increased the growth of roots of peas. Results indicate that when Fe deficiency is induced by HCO3 -, then the response of lupins and peas are similar to their response in acid solution culture. Differences between species therefore could not be explained by their relative abilities to acidify or release FeIII reducing compounds. Greater control of the distribution of Fe within the shoots, the presence of a pool of Fe within the roots, a lower threshold for Fe uptake, or a higher content of seed-Fe, may therefore be the reason for the lower sensitivity of peas than lupins to Fe deficiency.  相似文献   

17.
4-[4-2H]Aminobutyrate was prepared by incubation in 2H2O of glutamate with a partially purified glutamate decarboxylase from mouse brain. The 4R configuration was assigned to the compound on the basis of 1H nmr analysis of the ω-camphanoylamide of its methyl ester in the presence of Eu(dpm)3. Moreover 4-[4(S)4-3H,U-14C]aminobutyrate was shown to be formed from [2(S)2-3H,U-14C]glutamate by the same enzyme fraction. It is therefore demonstrated that glutamate decarboxylation catalyzed by this enzyme preparation occurs with retention of configuration.  相似文献   

18.
Oxidation of epinephrine (EPI) in aqueous solution at pH 7.4 generates anortho-quinone(1)that normally deprotonates and undergoes a rapid intramolecular cyclization and secondary reactions, ultimately leading to an indolic melanin polymer. In this investigation, it is demonstrated thatL-cysteine (CySH) can intervene in this reaction by scavengingo-quinone1to give 5-S-cysteinylepinephrine (5-S-CyS-EPI) and 2-S-cysteinylepinephrine (2-S-CyS-EPI). Subsequent oxidation (2e, 2H+) of the latter cysteinyl conjugates giveso-quinones that can either react further with free CySH to give the 2,5-bi-S- and 2,5,6-tri-S-cysteinyl conjugates of EPI or cyclize to give 7-[(2-methylamino)ethyl]-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-E1) and 8-[(2-methylamino)ethyl]-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-E2), respectively, Oxidations of 2,5-bi-S-CyS-EPI and 2,5,6-tris-S-CyS-EPI and of DHBT-E1 and DHBT-E2 in the presence of CySH provide routes to a number of other dihydrobenzothiazines (DHBTs). Four new cysteinyl conjugates of EPI and seven DHBTs have been isolated and their structures elucidated by spectroscopic methods. Based upon a number of lines of converging evidence, it is suggested that these compounds might include unusual metabolites of EPI formed in adrenergic neurons under certain pathological brain conditions.  相似文献   

19.
Pro-Aib hydroxyethylene isosteres (S,R)- and (S,S)-7 were synthesized by cascade addition of 2-methyl-1-propenylmagnesium bromide to Boc-Pro-OMe in the presence of CuCN, followed by ketone reduction and olefin oxidation. By protecting the amine and hydroxyl groups in an oxazolidinone ring, hydroxyethylene isosteres 7 were successfully incorporated into Boc-Phe-Pro- ψ -[CH-(OH)-CH2]-Aib-NHBn(α -Me) (S,R)-and (S,S)-11, which were characterized by 1H NMR and IR spectroscopy. Examination of the NOESY spectra and the influence of solvent changes on the chemical shifts of the amide and carbamate proton signals for (S,R)-and (S,S)-11 indicated that both hydroxyethylene isosteres could adopt compact turn structures. The alcohol appears to act as a hydrogen donor in a seven-membered ring intramolecular hydrogen bond. In addition, analysis of the respective peptide (S,S)-16, in which the hydroxyl group was masked as a methyl ether, showed that the turn conformation was disrupted, and indicated the importance of the alcohol as a hydrogen-bond donor for turn stability. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The data reported in this investigation revealed that phosphate and hydrogenase can affect the corrosion of mild steel. Phosphate reacted on mild-steel with concomitant evolution of hydrogen gas (H2) and the formation of vivianite. The enzyme hydrogenase was shown to accelerate this reaction by oxidizing the H2 produced, its known substrate. The components of biological growth media, one of which has been identified as phosphate, can interact with mild steel and cause corrosion. The implications of these findings to the corrosion industry are discussed. Correspondence to: E. Laishley  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号