共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana 总被引:11,自引:0,他引:11 下载免费PDF全文
S. C. Baker K. Robinson-Beers J. M. Villanueva J. C. Gaiser C. S. Gasser 《Genetics》1997,145(4):1109-1124
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. 相似文献
2.
4.
Three general classes of photomorphogenic photoreceptors have been characterized in higher plants: phytochrome, a blue light/ultraviolet (UV)-A photoreceptor(s), and a UV-B sensory system(s). Although a great deal is known about phytochrome and the blue light/UV-A photoreceptor(s), little is known about UV-B detection processes. One reason for this is the lack of readily quantifiable morphogenic responses that are specifically induced by UV-B radiation. We have discovered a response to UV-B, upward curling of Brassica napus L. cotyledons, that may be useful for probing the mechanism of UV-B photoreception. The process was initially observed when B. napus seeds were germinated under visible light plus UV-B radiation, but did not occur under visible light alone or visible light plus UV-A. When 5-d-old seedlings grown in visible light were given relatively short exposures of UV-B (100 min of 5.5 [mu]mol m-2 s-1), the curling response was also observed. Development of curling was separated from the application of this UV-B pulse by a 14-h latent period. Pulses of red light, blue light, farred light, and UV-A (100 min of 5.5 [mu]mol m-2 s-1) did not induce curling, indicating UV-B specificity Additionally, these other spectral regions did not reverse or enhance the UV-B-triggered response. The degree of curling showed a log-linear dependence on UV-B fluence (6-40 mmol m-2) and reciprocity with respect to length of exposure and fluence rate. The data indicate that curling is photomorphogenic in nature and may be triggered by a single photoreceptor species. 相似文献
5.
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis. 相似文献
6.
7.
8.
通过EMS诱变、背景纯化与遗传分析,从拟南芥突变群体中分离到一株单隐性核位点控制的雄性部分不育突变体pms15-16-2-3.细胞学观察表明,突变体在花药发育的过程中,中层细胞延迟降解,绒毡层细胞形态分化异常,出现异常的四分体,导致最终只能形成少量的花粉.利用图位克隆的方法对该基因进行了定位,结果表明PMSl5-16-2.3基因位于拟南芥第3条染色体BAC克隆T24C20 上的28 kb区间内.目前该区间内尚未见到控制小孢子发育基因的报道,因此该基因是一个控制小孢子发育的新基因.本研究结果对同的基因的克隆及其在化粉发育中的功能研究奠定了基础. 相似文献
9.
The utility of mining DNA sequence data to understand the structure and expression of cereal prolamin genes is demonstrated by the identification of a new class of wheat prolamins. This previously unrecognized wheat prolamin class, given the name δ-gliadins, is the most direct ortholog of barley γ3-hordeins. Phylogenetic analysis shows that the orthologous δ-gliadins and γ3-hordeins form a distinct prolamin branch that existed separate from the γ-gliadins and γ-hordeins in an ancestral Triticeae prior to the branching of wheat and barley. The expressed δ-gliadins are encoded by a single gene in each of the hexaploid wheat genomes. This single δ-gliadin/γ3-hordein ortholog may be a general feature of the Triticeae tribe since examination of ESTs from three barley cultivars also confirms a single γ3-hordein gene. Analysis of ESTs and cDNAs shows that the genes are expressed in at least five hexaploid wheat cultivars in addition to diploids Triticum monococcum and Aegilops tauschii. The latter two sequences also allow assignment of the δ-gliadin genes to the A and D genomes, respectively, with the third sequence type assumed to be from the B genome. Two wheat cultivars for which there are sufficient ESTs show different patterns of expression, i.e., with cv Chinese Spring expressing the genes from the A and B genomes, while cv Recital has ESTs from the A and D genomes. Genomic sequences of Chinese Spring show that the D genome gene is inactivated by tandem premature stop codons. A fourth δ-gliadin sequence occurs in the D genome of both Chinese Spring and Ae. tauschii, but no ESTs match this sequence and limited genomic sequences indicates a pseudogene containing frame shifts and premature stop codons. Sequencing of BACs covering a 3 Mb region from Ae. tauschii locates the δ-gliadin gene to the complex Gli-1 plus Glu-3 region on chromosome 1. 相似文献
10.
拟南芥中MATE基因家族的研究进展 总被引:4,自引:0,他引:4
多药和有毒化合物排出家族(Multidrug and Toxic Compound Extrusion, MATE)是一个新的次级转运蛋白家族,此类转运蛋白对氨基葡糖、阳离子染料、多种抗生素和药物有转运作用。拟南芥中的MATE基因家族是一个多基因家族,大概由56个成员构成,本文综述了拟南芥中MATE家族基因的研究进展,包括3个方面:第一是拟南芥中MATE家族成员的构成及主要特征;第二描述了转运蛋白的主要功能;第三分析了其功能多样的大致原因。此外,还展望了此家族研究的一些前景。 相似文献
11.
12.
13.
NYD-SP15: A Novel Gene Potentially Involved in Regulating Testicular Development and Spermatogenesis
Qinghuai Liu Jin Liu Qinhong Cao Jiahao Sha Zuomin Zhou Hui Wang Jianmin Li 《Biochemical genetics》2006,44(7-8):405-419
By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, we identified a novel human
testis gene, NYD-SP15. NYD-SP15 expression was 3.26-fold higher in adult than in fetal testis; however, there was almost no NYD-SP15 expression in the sperm. NYD-SP15 comprises 3364 base pairs, including a 1545 bp open reading frame encoding a 514 amino acid protein possessing 89% sequence
identity with the mouse testis homologous protein. NYD-SP15 is located on human chromosome 13q14.2. The deduced structure of the protein contains two dCMP_cyt_deam domains, indicating
a potential functional role for zinc ion binding. The gene is expressed variably in a wide range of tissues, with high expression
levels in the testis. Sequence analysis revealed that NYD-SP15 is not a highly conserved protein, with its distribution in high-level species such as vertebrates including Homo, Mus, Rattus, and Canis. The results of semiquantitative polymerase chain reaction in mouse testis representing different developmental stages indicate
that NYD-SP15 expression was developmentally regulated. These results suggest the putative NYD-SP15 protein may play an important role in testicular development and spermatogenesis and may be an important factor governing
male infertility.
These authors contributed equally to this work 相似文献
14.
Dubovoy C 《Genetics》1976,82(3):423-428
Twelve mutations affecting nuclear migration, a major developmental phase in Schizophyllum commune, display a complex pattern of complementation and recombination. They are expressed only when a genetic factor controlling this phase of development, the B incompatibility factor, is operative. All twelve mutations are linked to the B factor, nine in a cluster and three in distinct loci outside the cluster. A linear map cannot be constructed from the frequency of recombination. Complementation maps are not linear. There is little correlation between the complementation groups and the groups based on recombination. Many pairs of mutations that do not complement recombine with frequencies of 1.1% to 26.9%. The genes represented by the twelve mutations are located in a linked group of about 18 known genes involved in the specific phase of development controlled by the B factor. 相似文献
15.
16.
17.
Here, we demonstrate that the reduction in leaf K(+) observed in a mutant previously identified in an ionomic screen of fast neutron mutagenized Arabidopsis thaliana is caused by a loss-of-function allele of CPR5, which we name cpr5-3. This observation establishes low leaf K(+) as a new phenotype for loss-of-function alleles of CPR5. We investigate the factors affecting this low leaf K(+) in cpr5 using double mutants defective in salicylic acid (SA) and jasmonic acid (JA) signalling, and by gene expression analysis of various channels and transporters. Reciprocal grafting between cpr5 and Col-0 was used to determine the relative importance of the shoot and root in causing the low leaf K(+) phenotype of cpr5. Our data show that loss-of-function of CPR5 in shoots primarily determines the low leaf K(+) phenotype of cpr5, though the roots also contribute to a lesser degree. The low leaf K(+) phenotype of cpr5 is independent of the elevated SA and JA known to occur in cpr5. In cpr5 expression of genes encoding various Cyclic Nucleotide Gated Channels (CNGCs) are uniquely elevated in leaves. Further, expression of HAK5, encoding the high affinity K(+) uptake transporter, is reduced in roots of cpr5 grown with high or low K(+) supply. We suggest a model in which low leaf K(+) in cpr5 is driven primarily by enhanced shoot-to-root K(+) export caused by a constitutive activation of the expression of various CNGCs. This activation may enhance K(+) efflux, either indirectly via enhanced cytosolic Ca(2+) and/or directly by increased K(+) transport activity. Enhanced shoot-to-root K(+) export may also cause the reduced expression of HAK5 observed in roots of cpr5, leading to a reduction in uptake of K(+). All ionomic data presented is publically available at www.ionomicshub.org. 相似文献
18.
19.
Zheng Shuangshuang Ren Panrong Zhai Mingtong Li Chuanyou Chen Qian 《Plant Molecular Biology Reporter》2021,39(1):50-59
Plant Molecular Biology Reporter - Lead (Pb) is a heavy metal with high toxicity to plants. Root is the major organ to respond to Pb stress. However, little is known about how plant roots perceive... 相似文献
20.
EMF Genes Interact with Late-Flowering Genes to Regulate Arabidopsis Shoot Development 总被引:4,自引:0,他引:4
To investigate the genetic mechanisms regulating the transitionfrom vegetative to reproductive phase in Arabidopsis, doublemutants between two embryonic flower (emf) and 12 differentlate-flowering mutants were constructed and analyzed. Doublemutants in all combinations displayed the emf phenotypes withoutforming rosettes during early development; however, clear variationsbetween different double mutants were observed during late development,fwa significantly enhanced the vegetative property of both emfmutants by producing a high number of sessile leaves withoutany further reproductive growth in emf1 fwa double mutants.It also produced numerous leaf-like flower structures similarto those in leafy ap1 double mutant in emf1 fwa double mutants.Nine late-flowering mutants, ft, fca, ld, fd, fpa, fe, fy, fha,and fve, caused different degrees of increase in the numberof sessile leaves, the size of inflorescence, and the numberof flowers only in weak emf1 and emf2 mutant alleles background.Two late-flowering mutants, co and gi, however, had no effecton either emf1 and emf2 mutant alleles in double mutants. Ourresults suggest that FWA function in distinct pathways fromboth EMF genes to regulate flower competence by activating geneswhich specify floral meristem identity. CO and GI negativelyregulate both EMF genes, whereas the other nine late-floweringgenes may interact with EMF genes directly or indirectly toregulate shoot maturation in Arabidopsis.
1 To whom correspondence should be addressed. 相似文献