首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mechanism of block of voltage-dependent Na+ channels by extracellular divalent cations was investigated in a quantitative comparison of two distinct Na+ channel subtypes incorporated into planar bilayers in the presence of batrachotoxin. External Ca2+ and other divalent cations induced a fast voltage-dependent block observed as a reduction in unitary current for tetrodotoxin-sensitive Na+ channels of rat skeletal muscle and tetrodotoxin-insensitive Na+ channels of canine heart ventricular muscle. Using a simple model of voltage-dependent binding to a single site, these two distinct Na+ channel subtypes exhibited virtually the same affinity and voltage dependence for fast block by Ca2+ and a number of other divalent cations. This group of divalent cations exhibited an affinity sequence of Co congruent to Ni greater than Mn greater than Ca greater than Mg greater than Sr greater than Ba, following an inverse correlation between binding affinity and ionic radius. The voltage dependence of fast Ca2+ block was essentially independent of CaCl2 concentration; however, at constant voltage the Ca2+ concentration dependence of fast block deviated from a Langmuir isotherm in the manner expected for an effect of negative surface charge. Titration curves for fast Ca2+ block were fit to a simplified model based on a single Ca2+ binding site and the Gouy-Chapman theory of surface charge. This model gave similar estimates of negative surface charge density in the vicinity of the Ca2+ blocking site for muscle and heart Na+ channels. In contrast to other divalent cations listed above, Cd2+ and Zn2+ are more potent blockers of heart Na+ channels than muscle Na+ channels. Cd2+ induced a fast, voltage-dependent block in both Na+ channel subtypes with a 46-fold higher affinity at 0 mV for heart (KB = 0.37 mM) vs. muscle (KB = 17 mM). Zn2+ induced a fast, voltage-dependent block of muscle Na+ channels with low affinity (KB = 7.5 mM at 0 mV). In contrast, micromolar Zn2+ induced brief closures of heart Na+ channels that were resolved as discrete substate events at the single-channel level with an apparent blocking affinity of KB = 0.067 mM at 0 mV, or 110-fold higher affinity for Zn2+ compared with the muscle channel. High-affinity block of the heart channel by Cd2+ and Zn2+ exhibited approximately the same voltage dependence (e-fold per 60 mV) as low affinity block of the muscle subtype (e-fold per 54 mV), suggesting that the block occurs at structurally analogous sites in the two Na+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The single-channel blocking kinetics of tetrodotoxin (TTX), saxitoxin (STX), and several STX derivatives were measured for various Na-channel subtypes incorporated into planar lipid bilayers in the presence of batrachotoxin. The subtypes studied include Na channels from rat skeletal muscle and rat brain, which have high affinity for TTX/STX, and Na channels from denervated rat skeletal muscle and canine heart, which have about 20-60-fold lower affinity for these toxins at 22 degrees C. The equilibrium dissociation constant of toxin binding is an exponential function of voltage (e-fold per 40 mV) in the range of -60 to +60 mV. This voltage dependence is similar for all channel subtypes and toxins, indicating that this property is a conserved feature of channel function for batrachotoxin-activated channels. The decrease in binding affinity for TTX and STX in low-affinity subtypes is due to a 3-9-fold decrease in the association rate constant and a 4-8-fold increase in the dissociation rate constant. For a series of STX derivatives, the association rate constant for toxin binding is approximately an exponential function of net toxin charge in membranes of neutral lipids, implying that there is a negative surface potential due to fixed negative charges in the vicinity of the toxin receptor. The magnitude of this surface potential (-35 to -43 mV at 0.2 M NaCl) is similar for both high- and low-affinity subtypes, suggesting that the lower association rate of toxin binding to toxin-insensitive subtypes is not due to decreased surface charge but rather to a slower protein conformational step. The increased rates of toxin dissociation from insensitive subtypes can be attributed to the loss of a few specific bonding interactions in the binding site such as loss of a hydrogen bond with the N-1 hydroxyl group of neosaxitoxin, which contributes about 1 kcal/mol of intrinsic binding energy.  相似文献   

3.
Mammalian heart Na+ channels exhibit approximately 100-fold higher affinity for block by external Zn2+ than other Na+ channel subtypes. With batrachotoxin-modified Na+ channels from dog or calf heart, micromolar concentrations of external Zn2+ result in a flickering block to a substate level with a conductance of approximately 12% of the open channel at -50 mV. We examined the hypothesis that, in this blocking mode, Zn2+ binds to a subsite of the saxitoxin (STX) binding site of heart Na+ channels by single-channel analysis of the interaction between Zn2+ and STX and also by chemical modification experiments on single heart Na+ channels incorporated into planar lipid bilayers in the presence of batrachotoxin. We found that external Zn2+ relieved block by STX in a strictly competitive fashion. Kinetic analysis of this phenomenon was consistent with a scheme involving direct binding competition between Zn2+ and STX at a single site with intrinsic equilibrium dissociation constants of 30 nM for STX and 30 microM for Zn2+. Because high-affinity Zn2(+)-binding sites often include sulfhydryl groups as coordinating ligands of this metal ion, we tested the effect of a sulfhydryl-specific alkylating reagent, iodoacetamide (IAA), on Zn2+ and STX block. For six calf heart Na+ channels, we observed that exposure to 5 mM IAA completely abolished Zn2+ block and concomitantly modified STX binding with at least 20-fold reduction in affinity. These results lead us to propose a model in which Zn2+ binds to a subsite within or near the STX binding site of heart Na+ channels. This site is also presumed to contain one or more cysteine sulfhydryl groups.  相似文献   

4.
Voltage-gated Na+ channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca2+ permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca2+ or Na+ ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca2+ permeability, suggesting that ion–toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.  相似文献   

5.
Na+ channels from rat muscle plasma membrane vesicles were inserted into neutral planar phospholipid bilayers and were activated by batrachotoxin. Single channel blocking events induced by the addition of various guanidinium toxins were analyzed to derive the rates of channel-toxin association and dissociation. Blocking by tetrodotoxin, saxitoxin, and six natural saxitoxin derivatives containing sulfate or hydroxyl groups were studied. Although the binding affinities vary over 2,000-fold, all of the toxins exhibit identical voltage dependence of the blocking reactions, regardless of the toxin's net charge. The results suggest that the voltage dependence of toxin binding is due to a voltage-dependent conformational equilibrium of the toxin receptor, rather than to direct entry of the charged toxin molecule into the applied transmembrane electric field.  相似文献   

6.
We have previously studied single, voltage-dependent, saxitoxin-(STX) blockable sodium channels from rat brain in planar lipid bilayers, and found that channel block by STX was voltage-dependent. Here we describe the effect of voltage on the degree of block and on the kinetics of the blocking reaction. From their voltage dependence and kinetics, it was possible to distinguish single-channel current fluctuations due to blocking and unblocking of the channels by STX from those caused by intrinsic channel gating. The use of batrachotoxin (BTX) to inhibit sodium-channel inactivation allowed recordings of stationary fluctuations over extended periods of time. In a range of membrane potentials where the channels were open greater than 98% of the time, STX block was voltage-dependent, provided sufficient time was allowed to reach a steady state. Hyperpolarizing potentials favored block. Both association (blocking) and dissociation (unblocking) rate constants were voltage-dependent. The equilibrium dissociation constants computed from the association and dissociation rate constants for STX block were about the same as those determined from the steady-state fractional reduction in current. The steepness of the voltage dependence was consistent with the divalent toxin sensing 30-40% of the transmembrane potential.  相似文献   

7.
Monovalent and divalent cations competitively displace tetrodotoxin and saxitoxin (STX) from their binding sites on nerve and skeletal muscle Na channels. Recent studies of cloned cardiac (toxin-resistant) and brain (toxin-sensitive) Na channels suggest important structural differences in their toxin and divalent cation binding sites. We used a partially purified preparation of sheep cardiac Na channels to compare monovalent and divalent cation competition and pH dependence of binding of [3H]STX between these toxin-resistant channels and toxin-sensitive channels in membranes prepared from rat brain. The effects of several chemical modifiers of amino acid groups were also compared. Toxin competition curves for Na+ in heart and Cd2+ in brain yielded similar KD values to measurements of equilibrium binding curves. The monovalent cation sequence for effectiveness of [3H]STX competition is the same for cardiac and brain Na channels, with similar KI values for each ion and slopes of -1. The effectiveness sequence corresponds to unhydrated ion radii. For seven divalent cations tested (Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cd2+, and Zn2+) the sequence for [3H]STX competition was also similar. However, whereas all ions displaced [3H]STX from cardiac Na channels at lower concentrations, Cd2+ and Zn2+ did so at much lower concentrations. In addition, and by way of explication, the divalent ion competition curves for both brain and cardiac channels (except for Cd2+ and Zn2+ in heart and Zn2+ in brain) had slopes of less than -1, consistent with more than one interaction site. Two-site curves had statistically better fits than one-site curves. The derived values of KI for the higher affinity sites were similar between the channel types, but the lower affinity KI's were larger for heart. On the other hand, the slopes of competition curves for Cd2+ and Zn2+ were close to - 1, as if the cardiac Na channel had one dominant site of interaction or more than one site with similar values for KI. pH titration of [3H]STX binding to cardiac channels showed a pKa of 5.5 and a slope of 0.6-0.9, compared with a pKa of 5.1 and slope of 1 for brain channels. Tetramethyloxonium (TMO) treatment abolished [3H]STX binding to cardiac and brain channels and STX protected channels, but the TMO effect was less dramatic for cardiac channels. Trinitrobenzene sulfonate preferentially abolished [3H]STX binding to brain channels by action at an STX protected site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Batrachotoxin-modified, voltage-dependent sodium channels from canine forebrain were incorporated into planar lipid bilayers. Single-channel conductances were studied for [Na+] ranging between 0.02 and 3.5 M. Typically, the single-channel currents exhibited a simple two-state behavior, with transitions between closed and fully open states. Two other conductance states were observed: a subconductance state, usually seen at [NaCl] greater than or equal to 0.5 M, and a flickery state, usually seen at [NaCl] less than or equal to 0.5 M. The flickery state became more frequent as [NaCl] was decreased below 0.5 M. The K+/Na+ permeability ratio was approximately 0.16 in 0.5 and 2.5 M salt, independent of the Na+ mole fraction, which indicates that there are no interactions among permeant ions in the channels. Impermeant and permeant blocking ions (tetraethylammonium, Ca++, Zn++, and K+) have different effects when added to the extracellular and intracellular solutions, which indicates that the channel is asymmetrical and has at least two cation-binding sites. The conductance vs. [Na+] relation saturated at high concentrations, but could not be described by a Langmuir isotherm, as the conductance at low [NaCl] is higher than predicted from the data at [NaCl] greater than or equal to 1.0 M. At low [NaCl] (less than or equal to 0.1 M), increasing the ionic strength by additions of impermeant monovalent and divalent cations reduced the conductance, as if the magnitude of negative electrostatic potentials at the channel entrances were reduced. The conductances were comparable for channels in bilayers that carry a net negative charge and bilayers that carry no net charge. Together, these results lead to the conclusion that negative charges on the channel protein near the channel entrances increase the conductance, while lipid surface charges are less important.  相似文献   

9.
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity.  相似文献   

10.
The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-activated 22Na+ uptake (Na influx) were made in order to establish the temporal relationship of the appearance of these two Na+ channel activities during myogenesis. Na influx was clearly measurable in 2-d cells; from day 3 to day 7 the maximum Na influx approximately doubled when measured with saturating BTX concentrations potentiated by Leiurus scorpion toxin, while the apparent affinity of BTX, measured without scorpion toxin, also increased. Saturable STX binding did not appear consistently until day 3; from then until day 7 the STX binding capacity increased about threefold, whereas the equilibrium dissociation constant (KD) decreased about fourfold. Although Na influx in cells of all ages was totally inhibited by STX or tetrodotoxin (TTX) at 10 microM, lower concentrations (2-50 nM) blocked the influx in 7-d cells much more effectively than that in 3-d cells, where half the flux was resistant to STX at 20-50 nM. Similar but smaller differences characterized the block by TTX. In addition, when protein synthesis is inhibited by cycloheximide, both Na influx and STX binding activities disappear more rapidly in 3-d than in 7-d cells, which shows that these functions are less stable metabolically in the younger cells.  相似文献   

11.
The rat brain IIa (BrIIa) Na channel alpha-subunit and the brain beta 1 subunit were coexpressed in Xenopus oocytes, and peak whole-oocyte Na current (INa) was measured at a test potential of -10 mV. Hyperpolarization of the holding potential resulted in an increased affinity of STX and TTX rested-state block of BrIIa Na channels. The apparent half-block concentration (ED50) for STX of BrIIa current decreased with hyperpolarizing holding potentials (Vhold). At Vhold of -100 mV, the ED50 was 2.1 +/- 0.4 nM, and the affinity increased to a ED50 of 1.2 +/- 0.2 nM with Vhold of -140 mV. In the absence of toxin, the peak current amplitude was the same for all potentials negative to -90 mV, demonstrating that all of the channels were in a closed conformation and maximally available to open in this range of holding potentials. The Woodhull model (1973) was used to describe the increase of the STX ED50 as a function of holding potential. The equivalent electrical distance of block (delta) by STX was 0.18 from the extracellular milieu when the valence of STX was fixed to +2. Analysis of the holding potential dependence of TTX block yielded a similar delta when the valence of TTX was fixed to +1. We conclude that the guanidinium toxin site is located partially within the transmembrane electric field. Previous site-directed mutagenesis studies demonstrated that an isoform-specific phenylalanine in the BrIIa channel is critical for high affinity toxin block.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Voltage-dependent Ca++-activated K+ channels from rat skeletal muscle were reconstituted into planar lipid bilayers, and the kinetics of block of single channels by Ba++ were studied. The Ba++ association rate varies linearly with the probability of the channel being open, while the dissociation rate follows a rectangular hyperbolic relationship with open-state probability. Ba ions can be occluded within the channel by closing the channel with a strongly hyperpolarizing voltage applied during a Ba++-blocked interval. Occluded Ba ions cannot dissociate from the blocking site until after the channel opens. The ability of the closed channel to occlude Ba++ is used as an assay to study the channel's gating equilibrium in the blocked state. The blocked channel opens and closes in a voltage-dependent process similar to that of the unblocked channel. The presence of a Ba ion destabilizes the closed state of the blocked channel, however, by 1.5 kcal/mol. The results confirm that Ba ions block this channel by binding in the K+-conduction pathway. They further show that the blocking site is inaccessible to Ba++ from both the cytoplasmic and external solutions when the channel is closed.  相似文献   

13.
bTyrosine 401 of the skeletal muscle isoform (mu 1) of the rat muscle Na channel is an important determinant of high affinity block by tetrodotoxin (TTX) and saxitoxin (STX) in Na-channel isoforms. In mammalian heart Na channels, this residue is substituted by cysteine, which results in low affinity for TTX/STX and enhanced sensitivity to block by Zn2+ and Cd2+. In this study, we investigated the molecular basis for high affinity block of Na channels by STX and divalent cations by measuring inhibition of macroscopic Na+ current for a series of point mutations at residue Tyr401 of the rat mu 1 Na channel expressed in Xenopus oocytes. Substitution of Tyr401 by Gly, Ala, Ser, Cys, Asp, His, Trp, and Phe produced functional Na+ currents without major perturbation of gating or ionic selectivity. High affinity block by STX and neosaxitoxin (NEO) with Ki values in the range of 2.6-18 nM required Tyr, Phe, or Trp, suggestive of an interaction between an aromatic ring and a guanidinium group of the toxin. The Cys mutation resulted in a 7- and 23-fold enhancement of the dissociation rate of STX and NEO, respectively, corresponding to rapid toxin dissociation rates of cardiac Na channels. High affinity block by Zn2+ (Ki = 8-23 microM) required Cys, His, or Asp, three residues commonly found to coordinate directly with Zn2+ in metalloproteins. For the Cys mutant of mu 1 and also for the cardiac isoform Na channel (rh1) expressed in the L6 rat muscle cell line, inhibition of macroscopic Na+ conductance by Zn2+ reached a plateau at 85-90% inhibition, suggesting the presence of a substate current. The Asp mutant also displayed enhanced affinity for inhibition of conductance by Ca2+ (Ki = 0.3 mM vs approximately 40 mM in wild type), but block by Ca2+ was incomplete, saturating at approximately 69% inhibition. In contrast, Cd2+ completely blocked macroscopic current in the Cys mutant and the L6 cell line. These results imply that the magnitude of substate current depends on the particular residue at position 401 and the species of divalent cation. The His mutant also exhibited enhanced sensitivity to block by H+ with a pKa of approximately 7.5 for the His imidazole group. Our findings provide further evidence that residue 401 of mu 1 is located within the outer vestibule of the Na channel but external to the single-filing region for permeant ions.  相似文献   

14.
Single Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers formed from neutral phospholipids and were observed in the presence of batrachotoxin. The batrachotoxin-modified channel activates in the voltage range -120 to - 80 mV and remains open almost all the time at voltages positive to -60 mV. Low levels of tetrodotoxin (TTX) induce slow fluctuations of channel current, which represent the binding and dissociation of single TTX molecules to single channels. The rates of association and dissociation of TTX are both voltage dependent, and the association rate is competitively inhibited by Na+. This inhibition is observed only when Na+ is increased on the TTX binding side of the channel. The results suggest that the TTX receptor site is located at the channel's outer mouth, and that the Na+ competition site is not located deeply within the channel's conduction pathway.  相似文献   

15.
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids.  相似文献   

16.
The voltage-sensitive sodium channel of rat brain synaptosomes was solubilized with sodium cholate. The solubilized sodium channel migrated on a sucrose density gradient with an apparent S20,w of approximately 12 S, retained [3H]saxitoxin ([3H]STX) binding activity that was labile at 36 degrees C but no longer bound 125I-labeled scorpion toxin (125I-ScTX). Following reconstitution into phosphatidylcholine vesicles, the channel regained 125I-ScTX binding and thermal stability of [3H]STX binding. Approximately 50% of the [3H]STX binding activity and 58% of 125I-ScTX binding activity were recovered after reconstitution. The reconstituted sodium channel bound STX and ScTX with KD values of 5 and 10 nM, respectively. Under depolarized conditions, veratridine enhanced the binding of 125I-ScTX with a K0.5 of 20 microM. These KD and K0.5 values are similar to those of the native synaptosome sodium channel. 125I-ScTX binding to the reconstituted sodium channel, as with the native channel, was voltage dependent. The KD for 125I-ScTX increased with depolarization. This voltage dependence was used to demonstrate that the reconstituted channel transports Na+. Activation of sodium channels by veratridine under conditions expected to cause hyperpolarization of the reconstituted vesicles increased 125I-ScTX binding 3-fold. This increased binding was blocked by STX with K0.5 = 5 nM. These data indicate that reconstituted sodium channels can transport Na+ and hyperpolarize the reconstituted vesicles. Thus, incorporation of solubilized synaptosomal sodium channels into phosphatidylcholine vesicles results in recovery of toxin binding and action at each of the three neurotoxin receptor sites and restoration of Na+ transport by the reconstituted channels.  相似文献   

17.
(1) Voltage-clamped nerve fibres of the frog Rana esculenta were treated with periodate in the extracellular solution. (2) Periodate treatment irreversibly reduced the effect of tetrodotoxin (TTX) on the Na+ currents. (3) The effect of saxitoxin (STX) was also reduced but less than that of TTX. (4) The presence of STX during the application of periodate to the nerve fibre almost completely prevented the effect of the chemical reagent on the TTX sensitivity of the Na+ channels. (5) The reduction of the TTX effect is not due to the reaction of small amounts of periodate with the diol group of this toxin, because the effect was seen after prolonged washing with reagent-free Ringer solution with or without high amounts of ribose. (6) Carboxyl groups present in the Na+ channel seem to be quite important for the binding of TTX and STX. Periodate modifies several amino acid side chains, however, it does not attack carboxyl groups in a peptide chain. Thus, these results suggest that periodate modifies a further group critically involved in the binding of TTX and STX.  相似文献   

18.
The effects of extracellular saxitoxin (STX) and tetrodotoxin (TTX) on gating current (IgON) were studied in voltage clamped crayfish giant axons. At a holding potential (VH) of -90 mV, integrated gating charge (QON) was found to be 56% suppressed when 200 nM STX was added to the external solution, and 75% suppressed following the addition of 200 nM TTX. These concentrations of toxin are sufficiently high to block greater than 99% of sodium channels. A smaller suppression of IgON was observed when 1 nM STX was used (KD = 1-2 nM STX). The suppression of IgON by external toxin was found to be hold potential dependent, with only minimal suppression observed at the most hyperpolarized hold potentials, -140 to -120 mV. The maximal effect of these toxins on IgON was observed at hold potentials where the QON vs. VH plot was found to be steepest, -100 to -80 mV. The suppression of IgON induced by TTX is partially relieved following the removal of fast inactivation by intracellular treatment with N-bromoacetamide (NBA). The effect of STX and TTX on IgON is equivalent to a hyperpolarizing shift in the steady state inactivation curve, with 200 nM STX and 200 nM TTX inducing shifts of 4.9 +/- 1.7 mV and 10.0 +/- 2.1 mV, respectively. Our results are consistent with a model where the binding of toxin displaces a divalent cation from a negatively charged site near the external opening of the sodium channel, thereby producing a voltage offset sensed by the channel gating apparatus.  相似文献   

19.
The marine guanidinium toxins, saxitoxin (STX) and tetrodotoxin (TTX), have played crucial roles in the study of voltage-gated Na+ channels. Because they have similar actions, sizes, and functional groups, they have been thought to associate with the channel in the same manner, and early mutational studies supported this idea. Recent experiments by. Biophys. J. 67:2305-2315) have suggested that the toxins bind differently to the isoform-specific domain I Phe/Tyr/Cys location. In the adult skeletal muscle Na+ channel isoform (microliter), we compared the effects on both TTX and STX affinities of mutations in eight positions known to influence toxin binding. The results permitted the assignment of energies contributed by each amino acid to the binding reaction. For neutralizing mutations of Asp400, Glu755, and Lys1237, all thought to be part of the selectivity filter of the channel, the loss of binding energy was identical for the two toxins. However, the loss of binding energy was quite different for vestibule residues considered to be more superficial. Specifically, STX affinity was reduced much more by neutralizations of Glu758 and Asp1532. On the other hand, mutation of Tyr401 to Cys reduced TTX binding energy twice as much as it reduced STX binding energy. Kinetic analysis suggested that all outer vestibule residues tested interacted with both toxins early in the binding reaction (consistent with larger changes in the binding than unbinding rates) before the transition state and formation of the final bound complex. We propose a revised model of TTX and STX binding in the Na+ channel outer vestibule in which the toxins have similar interactions at the selectivity filter, TTX has a stronger interaction with Tyr401, and STX interacts more strongly with the more extracellular residues.  相似文献   

20.
Nonlinear charge movement (gating current) was studied by the whole-cell patch clamp method using cultured 17-d-old embryonic chick heart cells. Na+ and Ca++ currents were blocked by the addition of 10 microM TTX and 3 mM CoCl2; Cs+ replaced K+ both intra- and extracellularly. Linear capacitive and leakage currents were subtracted by a P/5 procedure. The small size (15 microns in diameter) and the lack of an organized internal membrane system in these myocytes permits a rapid voltage clamp of the surface membrane. Ca++ channel gating currents were activated positive to -60 mV; the rising phase was not distorted due to the system response time. The addition of BAY K 8644 (10(-6) M) caused a shortening of the time to peak of the Ca++ gating current, and a negative shift in the isochronal Qon vs. Vm curve. Qmax was unchanged by BAY K 8644. The voltage-dependent shift produced by BAY K 8644 is similar to that produced by isoproterenol (Josephson, I.R., and N. Sperelakis. 1990. Biophys. J. 57:305a. [Abstr.]). The results suggest that the binding of BAY K 8466 to one or more of the Ca++ channel subunits alters the kinetics and shifts the voltage dependence of gating. These changes in the gating currents can explain the parallel changes in the macroscopic Ca++ currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号