首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The aim of the current study was to investigate the role of p55 TNF Receptor (p55 TNFR), the main signaling receptor for the pro-inflammatory cytokine tumor necrosis factor (TNF), in the development of two vascular disorders: atherosclerosis and angiotensin (Ang) II-induced abdominal aortic aneurysms (AAA).

Methodology/Principal Findings

p55 TNFR deficient mice were crossed to an LDL receptor deficient background and were induced for the development of either atherosclerosis or AngII-induced AAA, and compared to littermate controls, wild-type for p55 TNFR expression. p55 TNFR deficient mice developed 43% smaller atherosclerotic lesions in the aortic sinuses compared to controls. Moreover, expression of CD68, a macrophage specific marker, exhibited a 50% reduction in the aortic arches. Decreased atherosclerosis correlated with a strong down-regulation in the expression of adhesion molecules, such as VCAM-1 and ICAM-1, by p55 TNFR deficient endothelium. In addition, expression levels of the pro-inflammatory cytokines and chemokines TNF, IL-6, MCP-1 and RANTES were significantly reduced in aortas of p55 TNFR deficient mice. In contrast, in the AngII-induced model of AAA, p55 TNFR deficiency correlated with a slight trend towards increased aneurismal lethality, but the incidence of aortic rupture due to a dissecting aneurysm, and the expansion of the suprarenal aorta were not significantly different compared to controls.

Conclusion/Significance

We found that p55 TNFR expression promotes atherosclerosis, among other mechanisms, by enhancing expression of endothelial adhesion molecules, while it seems to have no major role in the development of AngII-induced AAA.  相似文献   

2.
The role of IL-17 in atherogenesis remains controversial. We previously reported that the TLR/MyD88 signaling pathway plays an important role in high-fat diet as well as Chlamydophila pneumoniae infection-mediated acceleration of atherosclerosis in apolipoprotein E-deficient mice. In this study, we investigated the role of the IL-17A in high-fat diet (HFD)- and C. pneumoniae-induced acceleration of atherosclerosis. The aortic sinus plaque and aortic lesion size and lipid composition as well as macrophage accumulation in the lesions were significantly diminished in IL-17A(-/-) mice fed an HFD compared with wild-type (WT) C57BL/6 control mice. As expected, C. pneumoniae infection led to a significant increase in size and lipid content of the atherosclerotic lesions in WT mice. However, IL-17A(-/-) mice developed significantly less acceleration of lesion size following C. pneumoniae infection compared with WT control despite similar levels of blood cholesterol levels. Furthermore, C. pneumoniae infection in WT but not in IL-17A(-/-) mice was associated with significant increases in serum concentrations of IL-12p40, CCL2, IFN-γ, and numbers of macrophages in their plaques. Additionally, in vitro studies suggest that IL-17A activates vascular endothelial cells, which secrete cytokines that in turn enhance foam cell formation in macrophages. Taken together, our data suggest that IL-17A is proatherogenic and that it plays an important role in both diet-induced atherosclerotic lesion development, and C. pneumoniae infection-mediated acceleration of atherosclerotic lesions in the presence of HFD.  相似文献   

3.
Since the 1970s, cytomegalovirus (CMV) infection has been associated with atherosclerotic disease. However, the exact contribution of the virus remains uncertain. In this article we describe both a direct and indirect immune-mediated effect of the virus on the disease process. Eight-week-old apolipoprotein E (apoE) knockout mice were infected with mouse CMV (MCMV) or mock injected, and they were sacrificed at 2 and 20 weeks post-injection (p.i.) to study atherosclerosis, vascular wall IFNgamma and TNFalpha expression and MCMV spread. To study plasma IFNgamma and TNFalpha levels, blood was collected at 1, 2, 4 and 6 days p.i. in addition to days of sacrifice. Plasma cytokine levels were increased after MCMV infection at early time points and decreased to mock levels at 2 and 20 weeks p.i. At 2 weeks p.i., more aortic arch samples showed local cytokine expression after MCMV infection. The number of early atherosclerotic lesions and the percentage of mice containing early lesions were increased at 2 weeks p.i., while at 20 weeks p.i., the MCMV-induced effect on atherogenesis was seen on the late lesions. In conclusion, MCMV infection induces a systemic immune response reflecting an indirect effect of MCMV infection on atherosclerosis in addition to a local aortic immune response reflecting a direct effect of the virus on the atherosclerotic process.  相似文献   

4.
The tumor suppressor protein p53 is an essential molecule in cell proliferation and programmed cell death (apoptosis), and has been postulated to play a principal part in the development of atherosclerosis. We have examined the effect of p53 inactivation on atherogenesis in apoE-knockout mice, an animal model for atherosclerosis. We found that, compared with p53+/+/apoE-/- mice, p53-/-/apoE-/- mice developed considerably accelerated aortic atherosclerosis in the presence of a similar serum cholesterol in response to a high-fat diet. Furthermore, the atherosclerotic lesions in p53-/-/apoE-/- mice had a significant (approximately 280%) increase in cell proliferation rate and an insignificant (approximately 180%) increase in apoptosis compared with those in p53+/+/apoE-/- mice. Our observations indicate that the role of p53 in atherosclerotic lesion development might be associated with its function in cell replication control, and that p53-independent mechanisms can mediate the apoptotic response in atherosclerosis.  相似文献   

5.
Several clinical and angiographic intervention trials have shown that fibrate treatment leads to a reduction of the coronary events associated to atherosclerosis. Fibrates are ligands for peroxisome proliferator-activated receptor alpha (PPARalpha) that modulate risk factors related to atherosclerosis by acting at both systemic and vascular levels. Here, we investigated the effect of treatment with the PPARalpha agonist fenofibrate (FF) on the development of atherosclerotic lesions in apolipoprotein (apo) E-deficient mice and human apoA-I transgenic apoE-deficient (hapoA-I Tg x apoE-deficient) mice fed a Western diet. In apoE-deficient mice, plasma lipid levels were increased by FF treatment with no alteration in the cholesterol distribution profile. FF treatment did not reduce atherosclerotic lesion surface area in the aortic sinus of 5-month-old apoE-deficient mice. By contrast, FF treatment decreased total cholesterol and esterified cholesterol contents in descending aortas of these mice, an effect that was more pronounced in older mice exhibiting more advanced lesions. Furthermore, FF treatment reduced MCP-1 mRNA levels in the descending aortas of apoE-deficient mice, whereas ABCA-1 expression levels were maintained despite a significant reduction of aortic cholesterol content. In apoE-deficient mice expressing a human apoA-I transgene, FF increased human apoA-I plasma and hepatic mRNA levels without affecting plasma lipid levels. This increase in human apoA-I expression was accompanied by a significant reduction in the lesion surface area in the aortic sinus. These data indicate that the PPARalpha agonist fenofibrate reduces atherosclerosis in these animal models of atherosclerosis.  相似文献   

6.
Recent studies suggest that tumor necrosis factor (TNF) family members such as TNFalpha and lymphotoxin alphabeta (LTalpha1beta2) are important in the development of follicular dendritic cells (FDCs) and maintenance of FDC function. In this study we used FDC-like cells (FDC-LC) cultured from normal human tonsil and investigated the effects of TNF and LTalpha1beta2 on expression of adhesion molecules and the production of cytokines and chemokines. TNF and LTalpha1beta2 both increased the expression of VCAM-1 and ICAM-1 on FDC-LC. In addition, IL-4 with LTalpha1beta2 synergistically increased the expression of VCAM-1, but not ICAM-1. Cytokine IL-6 and IL-15 mRNAs were induced following stimulation with TNF and LTalpha1beta2. These two cytokines were present in FDC-LC supernatants by ELISA and increased following TNF and LTalpha1beta2 stimulation. We also examined FDC-LC for chemokines, which affect B cells, including IL-8, SDF-1, MIP3beta/ELC, and BCA-1/BLC. SDF-1 mRNA and protein were expressed by FDC-LC, and following stimulation with TNF and LTalpha1beta2, decreases in both were observed. Therefore, TNF and LTalpha1beta2, which are produced by activated B cells, increased the expression of adhesion molecules and cytokines from FDC-LC, potentially providing key signals to support germinal center B cell survival and differentiation.  相似文献   

7.
Inflammation is present in all stages of atherosclerosis, from fatty streaks to rupture of mature plaques. Tumour necrosis factor (TNF)-alpha is expressed in atherosclerotic lesions but its role in atherogenesis has not been defined. To clarify the role of this cytokine, we administered thalidomide, a compound known to inhibit TNF-alpha production, to homozygous apolipoprotein E-deficient (apoE-/-) mice in order to examine the effect of thalidomide on the development of early atherosclerotic lesions. Twelve apoE-/- mice were randomized to receive either sustained-release thalidomide or placebo pellets implanted subcutaneously, and the amount of atherosclerosis was quantified six weeks later. Thalidomide was well tolerated and did not result in any changes in body weight. Mice treated with thalidomide had significantly smaller mean (7986 +/- 5189 vs 19607 +/- 10353 microns 2, p = 0.05) and maximum (15800 [12777-23675] vs 37169 [28000-41351] microns 2, p = 0.03) lesion sizes than those treated with placebo. Thus, thalidomide is capable of inhibiting the early development of atherosclerosis, presumably by inhibition of TNF-alpha secretion.  相似文献   

8.
Lyst(beige) mice crossed with hyperlipidemic low density lipoprotein receptor-deficient mice (BgLDLr(-/-)) display increased lesion area and a more stable lesion morphology. To verify that the beige phenotype is not unique to LDLr(-/-) mice, we examined atherosclerosis in beige, apolipoprotein E-deficient mutant mice (BgApoE(-/-)). Severe diet-induced hyperlipidemia in BgApoE(-/-) mice resulted in increased aortic sinus lesion areas compared with controls. Minimal aortic lesions were observed in both genotypes on a chow diet. Nevertheless, BgApoE(-/-) mice displayed drastically reduced aortic sinus lesion growth. Reconstitution with bone marrow (BM) from green fluorescent protein mice created chimeric animals that allowed for the identification of donor-derived cells within lesions. Expressing the beige mutation exclusively in BM-derived cells had no impact on plaque development, yet the beige mutation in all cells except the BM-derived cells led to significantly larger aortic sinus lesion areas. Both mRNA and secreted protein levels of monocyte chemoattractant protein 1 were altered in quiescent and phorbol ester-stimulated cultured macrophages, vascular smooth muscle cells, and aortic endothelial cells isolated from BgApoE(-/-) mice. Thus, expression of the beige mutation in all cell types involved in lesion development contributed to atheroprotection in chow-fed ApoE(-/-) mice.  相似文献   

9.
Ma Y  Wang W  Zhang J  Lu Y  Wu W  Yan H  Wang Y 《PloS one》2012,7(4):e35835

Background

Mice deficient in the LDL receptor (Ldlr −/− mice) have been widely used as a model to mimic human atherosclerosis. However, the time-course of atherosclerotic lesion development and distribution of lesions at specific time-points are yet to be established. The current study sought to determine the progression and distribution of lesions in Ldlr −/− mice.

Methodology/Principal Findings

Ldlr-deficient mice fed regular chow or a high-fat (HF) diet for 0.5 to 12 months were analyzed for atherosclerotic lesions with en face and cross-sectional imaging. Mice displayed significant individual differences in lesion development when fed a chow diet, whereas those on a HF diet developed lesions in a time-dependent and site-selective manner. Specifically, mice subjected to the HF diet showed slight atherosclerotic lesions distributed exclusively in the aortic roots or innominate artery before 3 months. Lesions extended to the thoracic aorta at 6 months and abdominal aorta at 9 months. Cross-sectional analysis revealed the presence of advanced lesions in the aortic sinus after 3 months in the group on the HF diet and in the innominate artery at 6 to 9 months. The HF diet additionally resulted in increased total cholesterol, LDL, glucose, and HBA1c levels, along with the complication of obesity.

Conclusions/Significance

Ldlr-deficient mice on the HF diet tend to develop site-selective and size-specific atherosclerotic lesions over time. The current study should provide information on diet induction or drug intervention times and facilitate estimation of the appropriate locations of atherosclerotic lesions in Ldlr −/− mice.  相似文献   

10.
This review will focus on the role of cytokines in the behavior of macrophages, a prominent cell type of atherosclerotic lesions. Once these macrophages have immigrated into the vessel wall, they propagate the development of atherosclerosis by modifying lipoproteins, accumulating intracellular lipids, remodeling the extracellular environment, and promoting local coagulation. The numerous cytokines that have been detected in atherosclerosis, combined with the expression of large numbers of cytokine receptors on macrophages, are consistent with this axis being an important contributor to lesion development. Given the vast literature on cytokine-macrophage interactions, this review will be selective, with an emphasis on the major cytokines that have been detected in atherosclerotic lesions and their effects on properties that are relevant to lesion formation and maturation. There will be an emphasis on the role of cytokines in regulating lipid metabolism by macrophages. We will provide an overview of the major findings in cell culture and then put these in the context of in vivo studies.  相似文献   

11.
Hyperlipidemia is a major risk factor for developing atherosclerosis in humans, and epidemiological studies have correlated specific lipoprotein levels with cardiovascular disease risk. Murine models of atherosclerosis rely on the induction of hyperlipidemia for vascular lesions to form, but the pathogenic contributions attributed to different lipoprotein populations are not well defined. To address this issue, we analyzed over 300 LDL receptor (LDLR) deficient mice that have been fed a high-fat diet and for which a full lipoprotein profile and aortic root atherosclerosis values were assessed. Overall, aortic root atherosclerosis is best predicted by plasma VLDL cholesterol levels with less predictive value derived from either LDL or HDL cholesterol. Triglyceride levels are more atherogenic in female mice, especially immune competent females, and depletion of the adaptive immune system leads to a global reduction in plasma lipid levels and aortic root lesion size yet does not appear to alter the atherogenic potential of individual lipoprotein subspecies. In contrast, HDL-cholesterol is a better predictor of aortic root atherosclerosis in apoE-deficient mice. In summary, this large scale analysis of high-fat diet fed LDLR deficient mice highlight the relationship between different plasma lipid components, especially VLDL-cholesterol, and aortic root atherosclerosis.  相似文献   

12.
Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)-/- mice that were also deficient in iNOS. ApoE-/- and iNOS-/- mice were cross-bred to produce apoE-/-/iNOS-/- mice and apoE-/-/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30-50% reduction in apoE-/-/iNOS-/- mice compared with apoE-/-/iNOS+/+ mice. Although the size of the lesions in apoE-/-/iNOS-/- mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45-70% reductions in both male and female apoE-/-/iNOS-/- mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.  相似文献   

13.
In the previous study, we generated mice lacking thromboxane A2 receptor (TP) and apolipoprotein E, apoE(-/-)TP(-/-) mice, and reported that the double knockout mice developed markedly smaller atherosclerotic lesions than those in apoE(-/-) mice. To investigate the mechanism responsible for reduced atherosclerosis in apoE(-/-)TP(-/-) mice, we examined the role of TP in bone marrow (BM)-derived cells in the development of the atherosclerotic lesions. When we compared the function of macrophages in apoE(-/-) and in apoE(-/-)TP(-/-) mouse in vitro, there was no difference in the expression levels of cytokines and chemokines after stimulation with lipopolysaccharide. We then transplanted the BM from either apoE(-/-) or apoE(-/-)TP(-/-) mice to either apoE(-/-) or apoE(-/-)TP(-/-) mice after sublethal irradiation. After 12 weeks with high fat diet, we analyzed the atherosclerotic lesion of aortic sinus. When the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-) mice, the lesion size was almost the same as that of apoE(-/-) mice without BM transplantation. In contrast, when the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-)TP(-/-) mice, the lesion size was markedly reduced. These results indicate that the protection of atherogenesis in TP(-/-) mice is not associated with TP in BM-derived cells.  相似文献   

14.
The mouse has become the de facto model for the majority of atherosclerosis studies. Studies involving the quantification of lesions in mouse models of the disease represent the basis of our evolving concepts on the biochemical and cellular mechanisms underlying the atherogenic process. Many issues of experimental design, including specific model, strain, gender, atherogenic stimulus, duration of study, group size, and statistical analysis may influence the outcome and interpretation of atherosclerosis studies. The selection of vascular bed in which to quantify atherosclerotic lesion size could also impact the interpretation of results. Early studies quantified atherosclerotic lesion size in either specific regions or all of the aortic sinus. Measurement of atherosclerosis throughout the aortic intimal surface has become a common mode for defining lesion size. It is likely that other vascular regions will be increasingly used. In addition to size, there is an increased emphasis on identifying and quantifying the cellular and chemical composition of atherosclerotic lesions.  相似文献   

15.
Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice.  相似文献   

16.
Apoptotic cell death in atherosclerosis   总被引:16,自引:0,他引:16  
PURPOSE OF REVIEW: Apoptosis is a critical regulator of homeostasis in many tissues, including the vasculature. Apoptosis in atherosclerotic lesions is triggered by inflammatory processes, both via cell-cell contact and by cytokines and oxidized lipids. Apoptosis of vascular smooth muscle cells, endothelial cells and macrophages may promote plaque growth and pro-coagulation and may induce rupture, the major consequence of atherosclerosis in humans. RECENT FINDINGS: Studies over the past year have clearly demonstrated the significance of cell death in atherosclerosis. Some of the key cellular, cytokine and molecular regulators that contribute to the apoptosis of cells within the atherosclerotic lesion have been identified and their mechanism of action elucidated. Other studies have shed some light on the identity of cells whose loss by apoptosis contributes to plaque instability. SUMMARY: The identification of which cell types undergo apoptosis within the atherosclerotic lesion, the extracellular factors that impinge on these cells, and the intracellular mechanisms that govern their demise have begun to be elucidated. This information is critical in the design of further in-vivo experiments such as the exploitation of animal models, and ultimately, in applying this knowledge to clinical practice.  相似文献   

17.
Tumor necrosis factor (TNF) has pleiotropic effects including on hepatic metabolism. Here we investigated the effect of high cholesterol diet (1.25%) in TNF deficient mice. TNFalpha/beta deficient mice developed hepatomegaly and extensive steatosis in the absence of steatohepatitis as compared to wild type mice. Saturated and unsaturated, prominently mono- but also poly-unsaturated fatty acids (MUFA, PUFA) prevailed in steatotic livers. Down-regulation of the cholesterol scavenger receptor B1 and reduced insulin induced phosphorylation of protein kinase B in cholesterol fed TNFalpha/beta deficient mice likely contributed to the development of hepatic steatosis, which was accompanied by increased body weight and bone length. Steatosis was only present in TNFalpha/beta double deficient mice, however not in single TNF deficient mice suggesting a redundant role of TNFalpha and TNFbeta. In conclusion, high cholesterol diet causes an abnormal metabolic phenotype in the simultaneous absence of both TNFalpha and beta signals. The presence of either TNFalpha or beta alone is sufficient to reconstitute the control of lipid homeostasis.  相似文献   

18.
Song D  Fang G  Mao SZ  Ye X  Liu G  Gong Y  Liu SF 《Biochimica et biophysica acta》2012,1822(11):1650-1659
Chronic intermittent hypoxia (CIH) causes atherosclerosis in mice fed a high cholesterol diet (HCD). The mechanisms by which CIH promotes atherosclerosis are incompletely understood. This study defined the mechanistic role of NF-κB pathway in CIH+HCD induced atherosclerosis. Wild type (WT) and mice deficient in the p50 subunit of NF-κB (p50-KO) were fed normal chow diet (ND) or HCD, and exposed to sham or CIH. Atherosclerotic lesions on the en face aortic preparation and cross-sections of aortic root were examined. In WT mice, neither CIH nor HCD exposure alone caused, but CIH+HCD caused evident atherosclerotic lesions on both preparations after 20weeks of exposure. WT mice on ND and exposed to CIH for 35.6weeks did not develop atherosclerotic lesions. P50 gene deletion diminished CIH+HCD induced NF-κB activation and abolished CIH+HCD induced atherosclerosis. P50 gene deletion inhibited vascular wall inflammation, reduced hepatic TNF-α level, attenuated the elevation in serum cholesterol level and diminished macrophage foam cell formation induced by CIH+HCD exposure. These results demonstrate that inhibition of NF-κB activation abrogates the activation of three major atherogenic mechanisms associated with an abolition of CIH+HCD induced atherosclerosis. NF-κB may be a central common pathway through which CIH+HCD exposure activates multiple atherogenic mechanisms, leading to atherosclerosis.  相似文献   

19.
Several chemokines or chemokine receptors are involved in atherogenesis. CCR1 is expressed by macrophages and lymphocytes, two major cell types involved in the progression of atherosclerosis, and binds to lesion-expressed ligands. We examined the direct role of the blood-borne chemokine receptor CCR1 in atherosclerosis by transplanting bone marrow cells from either CCR1+/+ or CCR1-/- mice into low-density lipoprotein-receptor (LDLr)-deficient mice. After exposure to an atherogenic diet for 8 weeks, no differences in fatty streak size or composition were detected between the 2 groups. After 12 weeks of atherogenic diet, however, an unexpected 70% increase in atherosclerotic lesion size in the thoracic aorta was detected in the CCR1-/- mice, accompanied by a 37% increase in the aortic sinus lesion area. CCR1-/- mice showed enhanced basal and concanavalin A-stimulated IFN-gamma production by spleen T cells and enhanced plaque inflammation. In conclusion, blood-borne CCR1 alters the immuno-inflammatory response in atherosclerosis and prevents excessive plaque growth and inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号