首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The capability of 17beta-estradiol (E2) to induce the non-genomic activities of its receptors (ER alpha and ER beta) and to evoke different signaling pathways committed to the regulation of cell proliferation has been analyzed in different cell cancer lines containing transfected (HeLa) or endogenous (HepG2, DLD1) ER alpha or ER beta. In these cell lines, E2 induced different effects on cell growth/apoptosis in dependence of ER isoforms present. The E2-ER alpha complex rapidly activated multiple signal transduction pathways (i.e., ERK/MAPK, PI3K/AKT) committed to both cell cycle progression and apoptotic cascade prevention. On the other hand, the E2-ER beta complex induced the rapid and persistent phosphorylation of p38/MAPK which, in turn, was involved in caspase-3 activation and cleavage of poly(ADP-ribose)polymerase, driving cells into the apoptotic cycle. In addition, the E2-ER beta complex did not activate any of the E2-ER alpha-activated signal molecules involved in cell growth. Taken together, these results demonstrate the ability of ER beta isoform to activate specific signal transduction pathways starting from plasma membrane that may justify the effect of E2 in inducing cell proliferation or apoptosis in cancer cells. In particular this hormone promotes cell survival through ER alpha non-genomic signaling and cell death through ER beta non-genomic signaling.  相似文献   

7.
The in situ localization of osteoblast/osteocyte factor 45 (OF45) mRNA during bone formation has been examined in the rat mandible from embryonic day 14 (E14) up to postnatal 90-day-old Wistar rats. Gene expression was also examined during cell culture not only in primary rat osteoblast-like cells but also in two clonal rat osteoblastic cell lines with different stages of differentiation, ROB-C26 (C26) and ROB-C20 (C20) using Northern blot analysis. The C26 cell is a potential osteoblast precursor cell line, whereas the C20 cell is a more differentiated osteoblastic cell line. At E15 osteoblast precursor cells differentiated into a group of osteoblasts, some of which expressed the majority of non-collagenous proteins, whereas no expression of OF45 was observed in these cells. Intercellular matrices surrounded by osteoblasts were mineralized at E16. Subsequently, the number of osteoblasts differentiated from osteoblast precursor cells was increased in association with bone formation. At E17, the first expression of OF45 mRNA was observed only in a minority of mature osteoblasts attached to the bone matrix, but not in the rest of less mature osteoblasts. At E20, concomitant with the appearance of osteocytes, OF45 mRNA expression was observed not only in more differentiated osteoblasts that were encapsulated partly by bone matrix but also in osteocytes. Subsequently, osteocytes increased progressively in number and sustained OF45 mRNA expression in up to 90-day-old rats. Northern blot analysis of the cultured cells with or without dexamethasone treatment revealed that the gene expression of OF45 correlated well with the increased cell differentiation. These results indicate that OF45 mRNA is transiently expressed by mature osteoblasts and subsequently expressed by osteocytes throughout ossification in the skeleton and this protein represents an important marker of the osteocyte phenotype and most likely participates in regulating osteocyte function.  相似文献   

8.
Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.  相似文献   

9.
10.
Intermittent administration of parathyroid hormone (PTH) activates new sites of bone formation by stimulating osteoblast differentiation and function resulting in an increase in bone mass. Because integrins have been shown to play a crucial role in osteoblast differentiation and bone formation, in the present study, we evaluated whether human PTH (1-34) upon administration to rats, influenced integrin expression in osteoblastic cells isolated from the metaphysis and the diaphysis of rat long bones. Initial immunohistochemical evaluation of bone sections demonstrated that the osteoblasts expressed at least alphav, alpha2, alpha3, and alpha5beta1 integrins. Immunocolocalization studies for integrins and vinculin established that alphav, alpha2, and alpha5beta1, but not alpha3 integrins were present in the focal adhesion sites of osteoblasts attached to FN coated surfaces. Osteoprogenitor cells isolated from metaphyseal (but not diaphyseal) marrow of rats injected with intermittent PTH (1-34) exhibited greater alphav and reduced alpha2 levels, with no apparent changes in alpha3, and alpha5beta1 integrin levels, as assessed by immunohistochemistry, Northern, and Western blot analyses. However, these changes were not observed on the same cells treated with PTH in vitro. These observations suggest that integrin modulation by PTH is likely to be indirect and that selective phenotypic expression of integrin subtypes is part of the cascade of events that lead to PTH (1-34) mediated osteoblast differentiation.  相似文献   

11.
The nephroblastoma overexpressed (NOV) gene, also called CCN3, regulates differentiation of skeletal mesenchymal cells. Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and bone formation, but the effects of CCN3 on BMP expression and bone formation in cultured osteoblasts are largely unknown. Here we found that CCN3 increased BMP-4 expression and bone nodule formation in cultured osteoblast. Monoclonal antibodies for α5β1 and αvβ5 integrins, and inhibitors of integrin-linked kinase (ILK), p38, and JNK, all inhibited CCN3-induced bone nodule formation and BMP-4 up-regulation of osteoblasts. CCN3 stimulation increased the kinase activity of ILK and phosphorylation of p38 and JNK. Inhibitors of activator protein-1 (AP-1) also suppressed bone nodule formation and BMP-4 expression enhanced by CCN3. Moreover, CCN3-induced c-Jun translocation into the nucleus, and the binding of c-Jun to the AP-1 element on the BMP-4 promoter were both inhibited by specific inhibitors of the ILK, p38, and JNK cascades. Taken together, our results provide evidence that CCN3 enhances BMP-4 expression and bone nodule formation in osteoblasts, and that the integrin receptor, ILK, p38, JNK, and AP-1 signaling pathways may be involved.  相似文献   

12.
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. beta(1) integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1alpha,25(OH)(2)D(3) in a surface-dependent manner. To determine if beta(1) has a role in mediating osteoblast response, we silenced beta(1) expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human beta(1) to block ligand binding. beta(1)-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor beta(1), prostaglandin E(2), and osteoprotegerin in comparison with control cells. Moreover, beta(1)-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1alpha,25(OH)(2)D(3). Anti beta(1) antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1alpha,25(OH)(2)D(3) on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that beta(1) plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1alpha,25(OH)(2)D(3). The results also show that beta(1) mediates, in part, the synergistic effects of surface roughness and 1alpha,25(OH)(2)D(3).  相似文献   

13.
14.
15.
Fibroblast growth factors (FGF) are osteoblast mitogens, but their effects on bone formation are not clearly understood. Most in vitro studies examining the effects of FGFs on osteoblasts have been performed only during the initial proliferative stage of osteoblast culture. In these studies, we examined the consequential effect of acidic FGF in cultures of rat fetal diploid osteoblasts that undergo a developmental differentiation program producing a mineralized bone-like matrix. During the initial growth period (days 1–10), addition of acidic FGF (100 μg/ml) to actively proliferating cells increased (P < 0.05) 3H-thymidine uptake (2,515 ± 137, mean ± SEM vs. 5,884 ± 818 cpm/104 cells). During the second stage of maturation (days 10–15), osteoblasts form multilayered nodules of cells and accumulate matrix, followed by mineralization (stage 3, days 16–29). Addition of acidic FGF to the osteoblast cultures from days 7 to 15 completely blocked nodule formation. Furthermore, addition of acidic FGF after nodule formation (days 14–29) inhibited matrix mineralization, which was associated with a marked increase in collagenase gene expression, and resulted in a progressive change in the morphology of the nodules, with only a few remnants of nonmineralized nodules present by day 29. Histochemical and biochemical analyses revealed a decrease in alkaline phosphatase and mineral content, confirming the acidic FGF-induced inhibition of nodule and matrix formation. To identify mechanisms contributing to these changes, we examined expression of cell growth and bone phenotypic markers. Addition of acidic FGF during the proliferative phase (days 7–8) enhanced histone H4, osteopontin, type 1 collagen, and TGF-β mRNA levels, which are coupled to proliferating osteoblasts, and blocked the normal developmental increase in alkaline phosphatase and osteocalcin gene expression and calcium accumulation. Addition of acidic FGF to the cultures during matrix maturation (days 14–15) reactivated H4, osteopontin, type I collagen, and TGF-β gene expression, and decreased alkaline phosphatase and osteocalcin gene expression. In an in vivo experiment, rats were treated with up to 60 μg/kg/day acidic FGF intravenously for 30 days. Proliferation of osteoblasts and deposition of bone occurred in the marrow space of the diaphysis of the femur in a dose-related fashion. The metaphyseal areas were unaffected by treatment. In conclusion, our data suggest that acidic FGF is a potent mitogen for early stage osteoblasts which leads to modifications in the formation of the extracellular matrix; increases in TGF-β and collagenase are functionally implicated in abrogating competency for nodule formation. Persistence of proliferation prevented expression of alkaline phosphatase and osteocalcin, also contributing to the block in the progression of the osteoblast developmental sequence. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
Canonical Wnt signaling is particularly important for differentiation of human mesenchymal stem cells into osteoblast. MicroRNAs (miRNAs) also play an essential role in regulating cell differentiation. However, the role of miRNAs in osteoblast differentiation remains poorly understood. Here we found that the expression of miR-27 was increased during hFOB1.19 cells differentiation. Moreover, ectopic expression of miR-27 promoted hFOB1.19 cells differentiation, whereas its repression was sufficient to inhibit cell differentiation. Western blot analysis showed that the expression level of miR-27 was positively correlated with that of β-catenin, a key protein in Wnt signaling. Further, we verified that miR-27 directly targeted and inhibited adenomatous polyposis coli (APC) gene expression, and activated Wnt signaling through accumulation of β-catenin. This study suggests miR-27 is an important mediator of osteoblast differentiation, thus offering a new target for the development of preventive or therapeutic agents against osteogenic disorders.  相似文献   

18.
19.
We and others previously showed that p38 mitogen-activated protein kinase is indispensable for myogenic differentiation. However, it is less clear which of the four p38 isoforms in the mouse genome participates in this process. Using C2C12 myogenic cells as a model, we showed here that p38alpha, beta, and gamma are expressed with distinct expression patterns during differentiation. Knockdown of any of them by small interfering RNA inhibits myogenic differentiation, which suggests that the functions of the three p38 isoforms are not completely redundant. To further elucidate the unique role of each p38 isoform in myogenic differentiation, we individually knocked down one p38 isoform at a time in C2C12 cells, and we compared the whole-genome gene expression profiles by microarrays. We found that some genes are coregulated by all three p38 isoforms, whereas others are uniquely regulated by one particular p38 isoform. Furthermore, several novel p38 target genes (i.e., E2F2, cyclin D3, and WISP1) are found to be required for myogenin expression, which provides a molecular basis to explain why different p38 isoforms are required for myogenic differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号