首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D S Auld  G J Pielak 《Biochemistry》1991,30(35):8684-8690
The interaction of the N- and C-terminal helices is a hallmark of the cytochrome c family. Oligodeoxyribonucleotide-directed random mutagenesis within the gene encoding the C102T protein variant of Saccharomyces cerevisiae iso-1-cytochrome c was used to generate a library of mutations at the evolutionary invariant residues Gly-6 and Phe-10 in the N-terminal helix. Transformation of this library (contained on a low-copy-number yeast shuttle phagemid) into a yeast strain lacking a functional cytochrome c, followed by selection for cytochrome c function, reveals that 4-10% of the 400 possible amino acid substitutions are compatible with function. DNA sequence analysis of phagemids isolated from transformants exhibiting the functional phenotype elucidates the requirements for a stable helical interface. Basic residues are not tolerated at position 6 or 10. There is a broad volume constraint for amino acids at position 6. The amino acid substitutions observed to be compatible with function at Phe-10 show that the hydrophobic effect alone is sufficient to promote helical association. There are severe constraints that limit the combinations consistent with function, but the number of functionally consistent combinations observed exemplifies the plasticity of proteins.  相似文献   

2.
Phe82 is the most studied invariant residue of cytochrome c. However, the physiological relevance of amino acid substitutions at this position is unclear because previous studies were either performed in vitro (i.e. using purified protein) or in yeast where the gene for the protein is present on a multi-copy vector. Multi-copy vectors yield a level of cytochrome c in yeast that is greater than the wild-type level. Oligodeoxyribonucleotide-directed mutagenesis was used to change the codon for Phe82 to that of the other 19 naturally occurring amino acids as well as the amber stop codon. The alleles are present on a yeast shuttle phagemid containing the CEN6 gene which ensures a vector copy number of one to two in yeast. All the missense alleles support growth under conditions requiring a functional iso-1-cytochrome c. However the F82C, F82P, and F82R variants grow at a significantly lower rate. After selection for function, phagemids were rescued from the transformants and the identity of the mutation verified. It is concluded that all 20 amino acids are capable of supporting function. Reasons for the evolutionary invariance of Phe82 are discussed.  相似文献   

3.
Cytochromes c from plants and fungi, but not higher animals, contain methylated lysine residues at specific positions, including for example, the trimethylated lysine at position 72 in iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. Testing of 6,144 strains of S. cerevisiae, each overproducing a different open reading frame fused to glutathione S-transferase, previously revealed that YHR109w was associated with an activity that methylated horse cytochrome c. We show here that this open reading frame, denoted Ctm1p, is specifically responsible for trimethylating lysine 72 of iso-1-cytochrome c. Unmethylated forms of cytochrome c but not other proteins or nucleic acids are methylated in vitro by Ctm1p produced in S. cerevisiae or Escherichia coli. Iso-1-cytochrome c purified from a ctm1-Delta strain is not trimethylated in vivo, whereas the K72R mutant form, or the trimethylated Lys-72 form of iso-1-cytochrome c, are not significantly methylated by Ctm1p in vitro. Like apocytochrome c, but in contrast to holocytochrome c, Ctm lp is located in the cytosol, consistent with the view that the natural substrate is apocytochrome c. The ctm1-Delta strain lacking the methyltransferase did not exhibit any growth defect on a variety of media and growth conditions, and the unmethylated iso-1-cytochrome c was produced at the normal level and exhibited the normal activity in vivo. Ctm1p and cytochrome c were coordinately regulated during anaerobic to aerobic transition, a finding consistent with the view that this methyltransferase evolved to act on cytochrome c.  相似文献   

4.
The role of the nuclear-encoded subunit VIa in the regulation of cytochrome oxidase by ATP was investigated in isolated yeast mitochondria. As the subunit VIa-null strain possesses a fully active and assembled cytochrome oxidase, multiple ATP-regulating sites were characterized with respect to their location and their kinetic effect: (a) intra-mitochondrial ATP inhibited the complex IV activity of the null strain, whereas the prevailing effect of ATP on the wild-type strain, at low ionic strength, was activation on the cytosolic side of complex IV, mediated by subunit VIa. However, at physiological ionic strength (i.e. approximately 200 mM), activation by ATP was absent but inhibition was not impaired; (b) in ethanol-respiring mitochondria, when the electron flux was modulated using a protonophoric uncoupler, the redox state of aa3 cytochromes varied with respect to activation (wild-type) or inhibition (null-mutant) of the cytochrome oxidase by ATP; (c) consequently, the control coefficient of cytochrome oxidase on respiratory flux, decreased (wild-type) or increased (null-mutant) in the presence of ATP; (d) considering electron transport from cytochrome c to oxygen, the response of cytochrome oxidase to its thermodynamic driving force was increased by ATP for the wild-type but not for the mutant subunit. Taken together, these findings indicate that at physiological concentration, ATP regulates yeast cytochrome oxidase via subunit-mediated interactions on both sides of the inner membrane, thus subtly tuning the thermodynamic and kinetic control of respiration. This study opens up new prospects for understanding the feedback regulation of the respiratory chain by ATP.  相似文献   

5.
Cardiolipin (CL) is an inner mitochondrial membrane phospholipid that contributes to optimal mitochondrial function and is gaining widespread attention in studies of mitochondria-mediated apoptosis. Divergent hypotheses describing the role of CL in cytochrome c release and apoptosis have evolved. We addressed this controversy directly by comparing the spontaneous- and Bax-mediated cytochrome c release from mitochondria isolated from two strains of Saccharomyces cerevisiae: one lacking CL-synthase and therefore CL (DeltaCRD1) and the other, its corresponding wild type (WT). We demonstrated by liquid chromatography-mass spectrometry that the main yeast CL species [(16:1)2(18:1)2] differs in fatty acid composition from mammalian CL [(18:2)4], and we verified the absence of the yeast CL species in the DeltaCRD1 strain. We also demonstrated that the mitochondrial association of Bax and the resulting cytochrome c release is not dependent on the CL content of the yeast mitochondrial membranes. Bax inserted equally into both WT and DeltaCRD1 mitochondrial membranes under conditions that lead to the release of cytochrome c from both strains of yeast mitochondria. Furthermore, using models of synthetic liposomes and isolated yeast mitochondria, we found that cytochrome c was bound more "loosely" to the CL-deficient systems compared with when CL is present. These data challenge recent studies implicating that CL is required for Bax-mediated pore formation leading to the release of proteins from the mitochondrial intermembrane space. In contrast, they support our recently proposed two-step mechanism of cytochrome c release, which suggests that CL is required for binding cytochrome c to the inner mitochondrial membrane.  相似文献   

6.
The influence of an aromatic side chain at position 82 of yeast iso-1-cytochrome c on the kinetics of its electron transfer reactions has been investigated using laser flash photolysis methods to compare a series of site-specific mutant cytochromes in their reduction by free flavin semiquinone and in electron transfer from reduced cytochrome to bovine cytochrome c oxidase. Although small (approximately 10%) but significant differences are observed between some of the mutants (S82, Y82, I82) and wild-type (F82) or G82 cytochrome in the second-order rate constant for reduction by lumiflavin semiquinone, these do not correlate with side-chain aromaticity. In the reaction between the ferrocytochromes and cytochrome c oxidase, significantly larger deviations from exponentiality are found for those mutants having aliphatic residues at position 82 than for wild type or Y82. We interpret the nonexponential behavior in terms of multiple orientations of the cytochromes within the oxidase binding site; the extent to which this occurs is apparently influenced by the character of the residue at position 82. However, a comparison of the average rate constants for electron transfer to cytochrome oxidase for the various mutants reveals that all are closely comparable to WT, except for I82 which is significantly slower (approximately threefold). These results, combined with those obtained previously from steady-state kinetic and thermodynamic measurements, suggest that the observed differences among the mutants are due to alterations in the mode of binding of the cytochrome to the oxidase, rather than to a specific requirement for the presence of an aromatic group at position 82.  相似文献   

7.
Li X  Luo X  Li Z  Wang G  Xiao H  Tao D  Gong J  Hu J 《Molecular biology reports》2012,39(8):8225-8230
Salvador promotes both cell cycle exit and apoptosis through the modulation of both cyclin E and Drosophila inhibitor of apoptosis protein in Drosophila. However, the cellular function of human Salvador (hSav1) is rarely reported. To screen for novel binding proteins that interact with hSav1, the cDNA of hSav1 was cloned into a bait protein plasmid, and positive clones were screened from a human fetal liver cDNA library by the yeast two-hybrid system. hSav1 mRNA was expressed in yeast and there was no self-activation and toxicity in the yeast strain AH109. Twenty proteins were found to interact with hSav1, including HS1 (haematopoietic cell specific protein1)-associated protein X-1 (HAX-1); neural precursor cell expressed, developmentally down-regulated 9, pyruvate kinase, liver and RBC, cytochrome c oxidase subunit Vb, enoyl coenzyme A hydratase short chain 1, and NADH dehydrogenase (ubiquinone) 1 beta subcomplex, demonstrating that the yeast two-hybrid system is an efficient method for investigating protein interactions. Among the identified proteins, there were many mitochondrial proteins, indicating that hSav1 may play a role in mitochondrial function. We also confirmed the interaction of HAX-1 and hSav1 in mammalian cells. This investigation provides functional clues for further exploration of potential apoptosis-related proteins in disease biotherapy.  相似文献   

8.
Proton NMR spectroscopy at 500 and 361 MHz has been used to characterize the noncovalent or electrostatic complexes of yeast cytochrome c peroxidase (CcP) with horse, tuna, yeast isozyme-1, and yeast isozyme-2 ferricytochromes c and the covalently cross-linked complexes of cytochrome c peroxidase with horse and yeast isozyme-1 ferricytochromes c. Under the conditions employed in this work, the stoichiometry of the predominant complex formed in solution (which totaled greater than 90% of complex formed) was found to be 1:1 in all cases. These studies have elucidated significant differences in the proton NMR absorption spectra and the one-dimensional nuclear Overhauser effect difference spectra of the complexes, depending on the specific species of ferricytochrome c incorporated. In particular, the results indicate that the noncovalent complexes formed between CcP and physiological redox partners (yeast isozyme-1 or yeast isozyme-2 ferricytochromes c) are distinctly different from the noncovalent complexes formed between CcP and ferricytochromes c from horse and tuna. Parallel chemical cross-linking studies carried out using mixtures of cytochrome c peroxidase with horse ferricytochrome c, and cytochrome c peroxidase with yeast isozyme-1 ferricytochrome c further emphasize such cytochrome c-dependent differences, with only the covalently cross-linked complex of physiological redox partners (cytochrome c peroxidase/yeast isozyme-1) displaying NMR spectra characteristic of a heterogeneous mixture of different 1:1 complexes. Finally, one-dimensional nuclear Overhauser effect experiments have proven valuable in selectively and efficiently probing the protein-protein interface in these complexes, including the environment around the cytochrome c heme 3-methyl group and Phe-82.  相似文献   

9.
Strains of the yeast Saccharomyces cerevisiae disrupted in YCOX4, the nuclear gene encoding cytochrome c oxidase subunit IV, do not assemble a functional or spectrally visible oxidase. We report the characterization of a yeast strain, RM1, expressing a mutated YCOX4 gene which is temperature sensitive for respiration at 37 degrees C, but incorporates cytochrome aa3 over all growth temperatures. The mutant enzyme is less stable than the wild type, with subunit IV readily proteolyzed without gross denaturation of the complex but with a concomitant loss of oxidase activity. When grown fermentatively at 37 degrees C, cytochrome c oxidase from the mutant strain had a turnover number of less than 3% of the normal complex, while Km values and subunit levels were comparable to normal. Thus alterations in subunit IV can perturb the enzyme structure and alter its catalytic rate, implying a role for this subunit in cytochrome c oxidase function as distinct from assembly.  相似文献   

10.
Replacement of Phe-82 in yeast iso-1-cytochrome c with Tyr, Leu, Ile, Ser, Ala, and Gly produces a gradation of effects on (1) the reduction potential of the protein, (2) the rate of reaction with Fe(EDTA)2-, and (3) the CD spectra of the ferricytochromes in the Soret region under conditions where contributions from the alkaline forms of these proteins are absent. The reduction potential of cytochrome c is lowered by as little as 10 mV (Tyr-82) or by as much as 43 mV (Gly-82; pH 6.0) as the result of these substitutions. The second-order rate constants for reduction of these cytochromes range from a low of 6.20 (2) x 10(4) for the Tyr-82 variant to a high of 14.8 x 10(4) M-1 s-1 for the Ser-82 variant [pH 6.0, 25 degrees C, mu = 0.1 M (sodium phosphate)]. Analysis of these rates by use of relative Marcus theory produces values of k11corr that range from 10.9 M-1 s-1 for the wild-type protein to 190 M-1 s-1 for the Gly-82 mutant [25 degrees C, mu = 0.1 M, pH 6.0 (sodium phosphate)]. Reinvestigation of the effect of substituting Phe-82 by a Tyr residue on the CD spectrum of the protein now reveals little alteration of the intense, negative Cotton effect in the Soret CD spectrum of ferricytochrome c. On the other hand, substitution of nonaromatic residues of various sizes at this position results in loss of this spectroscopic feature, consistent with previous findings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The involvement of cytochrome b5 in palmitoyl-CoA desaturation by yeast microsomes was studied by using yeast mutants requiring unsaturated fatty acids and an antibody to yeast cytochrome b5. The mutants used were an unsaturated fatty acid auxotroph (strain E5) and a pleiotropic mutant (strain Ole 3) which requires either Tween 80 and ergosterol or delta-aminolevulinic acid for growth. Microsomes from the wild-type strain possessed both the desaturase activity and cytochrome b5, whereas those from mutant E5 contained the cytochrome but lacked the desaturase activity. Microsomes from mutant Ole 3 grown with Tween 80 plus ergosterol were devoid of both the desaturase activity and cytochrome b5, but those from delta-aminolevulinic acid-grown mutant Ole 3 contained cytochrome b5 and catalyzed the desaturation. The cytochrome b5 content in microsomes from mutant Ole 3 could be varied by changing the delta-aminolevulinic acid concentration in the growth medium, and the desaturase activity of the microsomes increased as their cytochrome b5 content was increased. The antibody to yeast cytochrome b5, but not the control gamma-globulin fraction, inhibited the NADH-cytochrome c reductase and NADH-dependent desaturase activities of the wild-type microsomes. It is concluded that cytochrome b5 is actually involved in the desaturase system of yeast microsomes. The lack of desaturase activity in mutant Ole 3 grown with Tween 80 plus ergosterol seems to be due to the absence of cytochrome b5 in microsomes, whereas the genetic lesion in mutant E5 appears to be located at ther terminal desaturase.  相似文献   

12.
In a search for the physiological conditions able to suppress the disruption of electron transport through the inner mitochondrial membrane induced by Bax, we found that respiratory substrate - lactate completely abolished Bax toxicity in yeast Kluyveromyces lactis. The effect of lactate was dependent on the presence of cytochrome c, as no effect was observed in the cytochrome c null strain. The investigation of lactate effect on markers of Bax toxicity showed that: (i) oxidation of lactate did not affect the decrease in oxygen consumption, but (ii) lactate was able to diminish the generation of reactive oxygen species and simultaneously to suppress Bax-induced cell death. We show that suppression of Bax lethality in K. lactis can be, in addition to anti-apoptotic proteins, achieved also by the utilization of lactate in the mitochondria.  相似文献   

13.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

14.
The structural and functional consequences of replacing omega-loop A (residues 18-32) in yeast iso-1-cytochrome c with the corresponding loop of Rhodospirillum rubrum cytochrome c2 have been examined. The three-dimensional structure of this loop replacement mutant RepA2 cytochrome c, and a second mutant RepA2(Val 20) cytochrome c in which residue 20 was back substituted to valine, were determined using X-ray diffraction techniques. A change in the molecular packing is evident in the RepA2 mutant protein, which has a phenylalanine at position 20, a residue considerably larger than the valine found in wild-type yeast iso-1-cytochrome c. The side chain of Phe 20 is redirected toward the molecular surface, altering the packing of this region of omega-loop A with the hydrophobic core of the protein. In the RepA2(Val 20) structure, omega-loop A contains a valine at position 20, which restores the original wild-type packing arrangement of the hydrophobic core. Also, as a result of omega-loop A replacement, residue 26 is changed from a histidine to asparagine, which results in displacements of the main-chain atoms near residue 44 to which residue 26 is hydrogen bonded. In vivo studies of the growth rate of the mutant strains on nonfermentable media indicate that the RepA2(Val 20) cytochrome c behaves much like the wild-type yeast iso-1 protein, whereas the stability and function of the RepA2 cytochrome c showed a temperature dependence. The midpoint reduction potential measured by cyclic voltammetry of the RepA2 mutant is 271 mV at 25 degrees C. This is 19 mV less than the wild-type and RepA2(Val 20) proteins (290 mV) and may result from disruption of the hydrophobic packing in the heme pocket and increased mobility of omega-loop A in RepA2 cytochrome c. The temperature dependence of the reduction potential is also greatly enhanced in the RepA2 protein.  相似文献   

15.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

16.
1. The steady state kinetics for the oxidation of ferrocytochrome c by yeast cytochrome c peroxidase are biphasic under most conditions. The same biphasic kinetics were observed for yeast iso-1, yeast iso-2, horse, tuna, and cicada cytochromes c. On changing ionic strength, buffer anions, and pH, the apparent Km values for the initial phase (Km1) varied relatively little while the corresponding apparent maximal velocities varied over a much larger range. 2. The highest apparent Vmax1 for horse cytochrome c is attained at relatively low pH (congruent to 6.0) and low ionic strength (congruent to 0.05), while maximal activity for the yeast protein is at higher pH (congruent to 7.0) and higher ionic strength (congruent to 0.2), with some variations depending on the nature of the buffering ions. 3. Direct binding studies showed that cytochrome c binds to two sites on the peroxidase, under conditions that give biphasic kinetics. Under those ionic conditions that yield monophasic kinetics, binding occurred at only one site. At the optimal buffer concentrations for both yeast and horse cytochromes c, the KD1 and KD2 values approximate the Km1 and Km2 values. At ionic strengths below optimal, binding becomes too strong and above optimal, too weak. 4. Under ionic conditions that are optimal and give monophasic kinetics with horse cytochrome c but are suboptimal for the yeast protein, yeast cytochrome c strongly inhibits the reaction of horse cytochrome c with peroxidase, uncompetitively at one site and competitively at a second site. The appearance of the second site under monophasic conditions is interpreted as an allosteric effect of the inhibitor binding to the first site. 5. The simplest model accounting for these observations postulates two kinetically active sites on each molecule of peroxidase, a high affinity and a low affinity site, that may correspond to the free radical and the heme iron (IV) of the oxidized enzyme, respectively. Both oxidizing equivalents may be discharged at either site. Furthermore, the enzyme appears to exist as an equilibrium mixture of a high ionic strength form, EH and a low ionic strength form, EL, the former reacting optimally with yeast cytochrome c, and the latter with horse cytochrome c.  相似文献   

17.
Yeast Cox4 is a zinc binding subunit of cytochrome c oxidase. Cox4 is the only cofactor-containing subunit that is not directly part of the catalytic core of the enzyme located in the mitochondrial inner membrane. The Zn(II) site is shown to be distinct from the bovine ortholog, as it results from the x-ray structure of the entire cytochrome c oxidase in having a single histidyl residue and three conserved cysteines residues in the coordination sphere. Substitutions at the Cys ligand positions result in non-functional Cox4 proteins that fail to lead to cytochrome oxidase assembly. Limited function exists in His-119 mutants when overexpressed. Zn(II) binding in Cox4 is, therefore, important for the stability of the complex. The solution structure of yeast Cox4 elucidated by multidimensional NMR reveals a C-terminal globular domain consisting of two beta sheets analogous to the bovine ortholog except the loop containing the coordinating His in the yeast protein and the fourth Cys in the bovine protein are in different positions in the two structures. The conformation of this loop is dictated by the different sequence position of the fourth coordinating zinc ligand. The Zn(II) ion is buried within the domain, consistent with its role in structural stability. Potential functions of this matrix-facing subunit are discussed.  相似文献   

18.
Cell-free translation systems are a powerful tool for the production of many kinds of proteins. However the production of proteins made up of hetero subunits is a major problem. In this study, we selected yeast tRNA (m(7)G46) methyltransferase (Trm8-Trm82 heterodimer) as a model protein. The enzyme catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA. When Trm8 or Trm82 mRNA were used for cell-free translation, Trm8 and Trm82 proteins could be synthesized. Upon mixing the synthesized Trm8 and Trm82 proteins, no active Trm8-Trm82 heterodimer was produced. Active Trm8-Trm82 heterodimer was only synthesized under conditions, in which both Trm8 and Trm82 mRNAs were co-translated. These results strongly suggest that the association of the Trm8 and Trm82 subunits is translationally controlled in living cells. Kinetic parameters of purified Trm8-Trm82 heterodimer were measured and these showed that the protein has comparable activity to other tRNA methyltransferases. The production of the m(7)G base at position 46 in tRNA was confirmed by two-dimensional thin layer chromatography and aniline cleavage of the methylated tRNA.  相似文献   

19.
20.
The first protein map of an ale-fermenting yeast is presented in this paper: 205 spots corresponding to 133 different proteins were identified. Comparison of the proteome of this ale strain with a lager brewing yeast and the Saccharomyces cerevisiae strain S288c confirmed that this ale strain is much closer to S288c than the lager strain at the proteome level. The dynamics of the ale-brewing yeast proteome during production-scale fermentation was analysed at the beginning and end of the first and the third usage of the yeast (called generation in the brewing industry). During the first generation, most changes were related to the switch from aerobic propagation to anaerobic fermentation. Fewer changes were observed during the third generation but certain stress-response proteins such as Hsp26p, Ssa4p and Pnc1p exhibited constitutive expression in subsequent generations. The ale brewing yeast strain appears to be quite well adapted to fermentation conditions and stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号