首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A biosensor based on flow injection of the recognition element has been developed. As a model a pH-transducer was used, and urease was chosen as the recognition element. The pH-transducer was immersed in an internal flow-through chamber which was in contact with the sample solution via a semi-permeable membrane. The recognition element, urease, was injected into the buffer solution passing through the biosensor. The enzyme catalysed the hydrolysis of urea and the concomitant increase in pH was recorded. The biosensor response time was about three minutes at a constant flow rate of 0·05 ml/min. The linear range of the calibration curve of the biosensor was 0–5 mM. The observed detection limit was approximately 0.1 mM. The sample throughput was 6–12 per hour. The pH-response of the biosensor, for a sample solution containing urea (3·26 mM), showed a reproducibility (r.s.d) of 28% (n = 5) and a repeatability (r.s.d.) of 8% (n = 5). Operation at elevated temperatures (up to 50°C) was demonstrated. The presence of glucose (28 mM), acetone (6·7 mM), citric acid (0·2 mM) or sodium acetate (0·6 mM) in the sample solution did not interfere with the sensor response. A lowering of the biosensor response which was observed in the presence of copper ions (due to urease inhibition) could be completely eliminated by adding EDTA to the urease solution. Thus, this work demonstrates a new type of biosensors, based on SIRE-technology (Sensors with Injectable Recognition Elements), which show high accuracy and stability, quick response and high sample throughput. These features suggest the suitability of the system for automation. Such sensors should readily be combined with other enzymes or enzyme systems. The enzyme (urease) cost per analysis (injection) for the biosensor was estimated to be approximately US$0·02. This could be substantially reduced by further optimisation and miniaturisation.  相似文献   

2.
An urea biosensor based on urease-BSA (bovine serum albumin) membrane immobilised on the surface of an ion-sensitive field effect transistor (ISFET) has been studied in a mix buffer solution composed of potassium phosphate, Tris, citric acid and sodium tetraborate. In this mix buffer, the biosensor showed a dynamic larger than the one observed in a phosphate or Tris buffer. Investigation of the individual effect of each component of the buffer solution on the biosensor response has shown that tetraborate anion acts as a strong competitive inhibitor for the hydrolysis reaction of urea catalysed by urease. The biosensor response was investigated in a phosphate buffer with different concentrations of tetraborate anion. The results showed that the apparent constant of Michaelis-Menten, K(m(app)), increases from 4.3 to 79.3 mM, for experiments realised without and with 0.5 mM sodium tetraborate, respectively. The mean value, determined graphically, for the inhibition constant, K(i), was 29 microM. The graphical representation of biosensor calibration curves in semilogarithmic co-ordinates showed that the linear range of the biosensor can be extended up to three orders of magnitude, allowing an urea detection in a concentration range 0-100 mM.  相似文献   

3.
A new urea biosensor for clinical applications was obtained by immobilization of urease within different latex polymers functionalized by hydroxy, acetate and lactobionate groups. Responses of these biosensors based on pH-ion-selective field effect insulator-semiconductor (IS) systems to urea additions were evaluated by capacitance measurements. UV-visible spectroscopy was used to check the urease activity in various matrixes. A good retention of the catalytic urease activity in the case of the cationic polymers was observed. In addition, rotating disk electrode experiments were carried out to determine the matrix permeability characteristics. Under optimal conditions, i.e. buffer capacity corresponding to 5 mM phosphate buffer, the urea enzyme insulator semiconductor (ENIS) sensors showed a linear response for urea concentrations in the range 10(-1.5) to 10(-4)M. Furthermore, kinetic parameters for the immobilized urease were obtained from Lineweaver-Burk plot. Clearly, a fast response and a good adhesion for the urease-acetate polymer composite films, prepared without using glutaraldehyde as cross-linking agent was observed.  相似文献   

4.
An optical biosensor for urea measurements was developed. The operation of the sensor is based on the well-known urease enzyme-catalyzed hydrolysis of urea. The ammonium ions liberated in the reaction are detected with an ion selective optode membrane containing nonactin as ion selective ionophore and ETH 5294 chromoionophore in a thin (1 microm) plasticized poly(vinylchloride) film. The basic sensing element was home made of a microscope glass slide, a HeNe laser light source, photodiode light detector and light in coupling, de-coupling elements. The transducer membrane and the enzyme containing reaction layer were sandwich-cast with spin coating onto the surface of the sensing slide. The attenuation of the laser light propagating inside the glass wave-guide was used as signal for urea measurements. With this arrangement membranes provided good sensitivity (0.05 absorption unit when going from 0.1 to 1 mM urea) and short (16-20 s) response time. Taking advantage on the improved response time, flow injection urea measurements were made in the 0.01-2 mM concentration range. Thirty sample/hour analysis-rate, good peak-to-peak reproducibility (RSD=0.02) and recovery (95-104%) was achieved with buffer diluted urea solutions. Applications for the analysis of real samples are planned to do in the future.  相似文献   

5.
The urease was immobilized onto nanoporous alumina membranes prepared by the two-step anodization method, and a novel piezoelectric urea sensing system with separated porous alumina/urease electrode has been developed through measuring the conductivity change of immobilized urease/urea reaction. The process of urease immobilization was optimized and the performance of the developed urea biosensor was evaluated. The obtained urea biosensor presented high-selectivity monitoring of urea, better reproducibility (S.D. = 0.02, n = 6), shorter response time (30 s), wider linear range (0.5 μM to 3 mM), lower detection limit (0.2 μM) and good long-term storage stability (with about 76% of the enzymatic activity retained after 30 days). The clinical analysis of the urea biosensor confirmed the feasibility of urea detection in urine samples.  相似文献   

6.
An amperometric biosensor was developed for determination of urea using electrodeposited rhodium on a polymer membrane and immobilized urease. The urease catalyzes the hydrolysis of urea to NH4+ and HCO3 ions and the liberated ammonia is catalytically and electrochemically oxidized by rhodium present in the rhodinized membrane on the Pt working electrode. Three types of rhodinized polymer membranes were prepared by varying the number of electrodeposition cycles: membrane 1 with 10 deposition cycles, membrane 2 with 40 cycles and membrane 3 with 60 cycles. The morphologies of the rhodinized membranes were investigated by scanning electron microscopy and the results showed that the deposition of rhodium was like flowers with cornices-like centers. The influence of the amount of electrodeposited rhodium over the electrode sensitivity to different concentrations of ammonia was examined initially based on the cyclic voltammetric curves using the three rhodium modified electrodes. The obtained results convincingly show that electrode with rhodinized membrane 1, which contain the lowest amount of electrodeposited rhodium is the most active and sensitive regarding ammonia. It was found that the anodic oxidation peak of ammonia to nitrogen occurs at 0.60 V. In order to study the performance of urease amperometric sensor for the determination of urea, experiments at constant potential (0.60 V) were performed. The current–time experiments were carried out with urease rhodinized membrane 1 (10 cycles). The amperometric response increased linearly up to 1.75 mM urea. The detection limit was 0.05 mM. The urea biosensor exhibited a high sensitivity of 1.85 μA mM−1 cm−2 with a response time 15 s. The Michaelis–Menten constant Km for the urea biosensor was calculated to be 6.5 mM, indicating that the immobilized enzyme featured a high affinity to urea. The urea sensor showed a good reproducibility and stability. Both components rhodium and urease contribute to the decreasing of the production cost of biosensor by avoiding the use of a second enzyme.  相似文献   

7.
A novel L-arginine-selective amperometric bi-enzyme biosensor based on recombinant human arginase I isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer was placed onto a polyaniline-Nafion composite platinum electrode and covered with a calcium alginate gel. The developed sensor revealed a good selectivity to L-arginine. The sensitivity of the biosensor was 110 ± 1.3 nA/(mM mm(2)) with the apparent Michaelis-Menten constant (K(M)(app)) derived from an L-arginine (L-Arg) calibration curve of 1.27 ± 0.29 mM. A linear concentration range was observed from 0.07 to 0.6mM, a limit of detection being 0.038 mM and a response time - 10s. The developed biosensor demonstrated good storage stability. A laboratory prototype of the proposed amperometric biosensor was applied to the samples of three commercial pharmaceuticals ("Tivortin", "Cytrarginine", "Aminoplazmal 10% E") for L-Arg testing. The obtained L-Arg-content values correlated well with those declared by producers.  相似文献   

8.
《IRBM》2008,29(2-3):192-201
In this report, we describe a novel strategy for the design of a clinical urea biosensor using a process based on assembled multilayer systems. Biotinylated enzyme (urease–subiotin) was immobilized on the biotinylated polypyrrole coated Chemical field effect capacitance (ChemFEC) devices using the high avidin–biotin affinity. The immobilized enzyme activity was checked by its catalytic conversion of urea into carbon dioxide and ammonia. Electrochemical response of the bridge system constructed on Si/SiO2/Si3N4 electrodes to urea addition was evaluated using the capacity–potential measurements. In addition, contact-angle measurements were carried out to control the change of surface energy and their components before and after each layer formation. The developed urea biosensor demonstrates high performances: a good sensitivity of 50 mV/pUrea in the linear urea concentration range from 10−4 to 10−1 M and an excellent operational stability after three weeks of continuous use. The immobilized urease was characterised through its apparent Michaelis–Menten constant (5 mM) and the activation energy of the enzymatic reaction (20 kJ mol−1). It was also shown that capacitive measurements can be used to quantify the interaction between molecular systems, based on avidin and biotin molecules.  相似文献   

9.
A polyelectrolyte-based enzymatic diagnosticum with a precipitation detection system that can be used as a biosensor was created. The detection method was based on the change in polyelectrolyte microcapsule weight with respect to the urea content. The possibility of biosensor reutilization was demonstrated. The appropriate ionic precipitator causing precipitation of insoluble carbonate within the microcapsules and the optimal microcapsule titre were found. In the solution of monovalent anions (chlorides), the activity of encapsulated urease was shown to increase monotonically as the square root of the ionic strength depending on the elevation of the salt content. The activity drastically increased in a narrow concentration interval (0.6–0.8 mM) of divalent anions (sulfates) and reached the level of the native enzyme activity.  相似文献   

10.
Many-sided investigations of urease immobilization methods were carried out to create the biosensor devices on the base of semiconductor structures. Special attention was concentrated on the biomembrane formation by means of urease and bovine serum albumin (BSA) cross-linking by gaseous glutaraldehyde. Optimal conditions for the formation process were selected which preserve about 20% of total urease activity after the cross-linking. The properties of enzyme immobilized by the above-mentioned method have been comprehensively studied. They included the urease activity dependence on pH, ionic strength, incubation buffer capacity as well as the enzyme stability during its functioning, storing and thermoinactivation. As was shown, for immobilized ureas Km value for urea at pH 7.0 and 20 degrees C is 1.65 time less than for free enzyme. In the presence of EDTA (1 mM) the enzyme activity in the biomembrane is practically unchanged under a month storing. Biomembrane possesses good adhesion to silicon surface and its swelling level under different conditions does not exceed 35%. The conclusion is made about the prospects of the used method of biomembrane formation for biosensor technology based on semiconductor structures.  相似文献   

11.
A urea biosensor was developed using the urease entrapped in polyvinyl alcohol (PVA) and polyacrylamide (PAA) composite polymer membrane. The membrane was prepared on the cheesecloth support by gamma-irradiation induced free radical polymerization. The performance of the biosensor was monitored using a flow-through cell, where the membrane was kept in conjugation with the ammonia selective electrode and urea was added as substrate in phosphate buffer medium. The ammonia produced as a result of enzymatic reaction was monitored potentiometrically. The potential of the system was amplified using an electronic circuit incorporating operational amplifiers. Automated data acquisition was carried by connecting the output to a 12-bit analog to digital converter card. The sensor working range was 1–1000 mM urea with a response time of 120 s. The enzyme membranes could be reused 8 times with more than 90% accuracy. The biosensor was tested for blood urea nitrogen (BUN) estimation in clinical serum samples. The biosensor showed good correlation with commercial Infinity™ BUN reagent method using a clinical chemistry autoanalyzer. The membranes could be preserved in phosphate buffer containing dithiothreitol, β-mercaptoethanol and glycerol for a period of two months without significant loss of enzyme activity.  相似文献   

12.
A new matrix for enzyme immobilization of urease was obtained by incorporating rhodium nanoparticles (5% on activated charcoal) and chemical bonding of chitosan with different concentration (0.15%; 0.3%; 0.5%; 1.0%; 1.5%) in previously chemically modified AN copolymer membrane. The basic characteristics of the chitosan modified membranes were investigated. The SEM analyses were shown essential morphology change in the different modified membranes. Both the amount of bound protein and relative activity of immobilized enzyme were measured. A higher activity (about 77.44%) was measured for urease bound to AN copolymer membrane coated with 1.0% chitosan and containing rhodium nanoparticles. The basic characteristics (pH(opt), T(opt), thermal, storage and operation stability) of immobilized enzyme on this optimized modified membrane were also determined. The prepared enzyme membrane was used for the construction of amperometric biosensor for urea detection. Its basic amperometric characteristics were investigated. A calibration plot was obtained for urea concentration ranging from 1.6 to 23 mM. A linear interval was detected along the calibration curve from 1.6 to 8.2mM. The sensitivity of the constructed biosensor was calculated to be 3.1927 μAmM(-1)cm(-2). The correlation coefficient for this concentration range was 0.998. The detection limit with regard to urea was calculated to be 0.5mM at a signal-to-noise ratio of 3. The biosensor was employed for 10 days while the maximum response to urea retained 86.8%.  相似文献   

13.
A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting.  相似文献   

14.
The influence of urease activity on N distribution and losses after foliar urea application was investigated using wild-type and transgenic potato (Solanum tuberosum cv Désirée) plants in which urease activity was down-regulated. A good correlation between urease activity and (15)N urea metabolism (NH(3) accumulation) was found. The general accumulation of ammonium in leaves treated with urea indicated that urease activity is not rate limiting, at least initially, for the assimilation of urea N by the plant. It is surprising that there was no effect of urease activity on either N losses or (15)N distribution in the plants after foliar urea application. Experiments with wild-type plants in the field using foliar-applied (15)N urea demonstrated an initial rapid export of N from urea-treated leaves to the tubers within 48 h, followed by a more gradual redistribution during the subsequent days. Only 10% to 18% of urea N applied was lost (presumably because of NH(3) volatilization) in contrast to far greater losses reported in several other studies. The pattern of urease activity in the canopy was investigated during plant development. The activity per unit protein increased up to 10-fold with leaf and plant age, suggesting a correlation with increased N recycling in senescing tissues. Whereas several reports have claimed that plant urease is inducible by urea, no evidence for urease induction could be found in potato.  相似文献   

15.
A potentiometric biosensor has been designed on the basis of glass pH-electrode with a sensing device of the microcellular polyelectrolytic coating containing urease. The polymeric walls of the coating are readily permeable for low-molecular weight compounds, including urea, but are impermeable for macromolecules. The main characteristics of the biosensor in various experimental solutions containing urea, low-molecular-weight salt, and buffer have been obtained. The sensor has been shown to be stable for at least three weeks. The standard curves of the sensor are linear in the range of urea concentrations from 0.2 to 20 mM.  相似文献   

16.
An original and novel assay system with urease as a catalyst and CdSe/ZnS quantum dots (QDs) as an indicator has been developed for quantitative analysis of urea. By mixing urease and QDs, the determination of urea can be performed in a quantitative manner. The detection is based on the enhancement of QD photoluminescence (PL) intensity, which is correlated to the enzymatic degradation of urea. By controlling the buffer concentration and pH, PL enhancement due to the degradation of urea is linear in the urea concentration ranging from 0.01 to 100mM. This property makes the urease/QDs system to be a promising urea-biosensing system. The newly developed system is a superior design and possesses many advantages, including its simple preparation, low cost, no enzyme immobilization required, high flexibility, and good sensitivity.  相似文献   

17.
A potentiometric urea-sensitive biosensor using a NH4(+)-sensitive disposable electrode in double matrix membrane (DMM) technology as transducer is described. The ion-sensitive polymer matrix membrane was formed in the presence of an additional electrochemical inert filter paper matrix to improve the reproducibility in sensor production. The electrodes were prepared from one-side silver-coated filter paper, which is encapsulated for insulation by a heat-sealing film. A defined volume of the NH4(+)-sensitive polymer matrix membrane cocktail was deposited on this filter paper. To obtain the urea-biosensor a layer of urease was cast onto the ion-sensitive membrane. Poly (carbamoylsulfonate) hydrogel, produced from a hydrophilic polyurethane prepolymer blocked with bisulfite, served as immobilisation material. The disposable urea sensitive electrode was combined with a disposable Ag/AgCl reference electrode to obtain the disposable urea biosensor. The sensor responded rapidly and in a stable manner to changes in urea concentrations between 7.2 x 10(-5) and 2.1 x 10(-2)mol/l. The detection limit was 2 x 10(-5) mol/l urea and the slope in the linear range 52 mV/decade. By taking into consideration the influence of the interfering K(+)- and Na(+)-ions the sensor can be used for the determination of urea in human blood and serum samples (diluted or undiluted). A good correlation was found with the data obtained by the spectrophotometric routine method.  相似文献   

18.
This study compared the responses of three enzyme reactors containing urease immobilized on three types of solid support, controlled pore glass (CPG), silica gel and Poraver. The evaluation of each enzyme reactor column was done in a flow injection conductimetric system. When urea in the sample solution passed though the enzyme reactor, urease catalysed the hydrolysis of urea into charged products. A lab-built conductivity meter was used to measure the increase in conductivity of the solution. The responses of the enzyme reactor column with urease immobilized on CPG and silica gel were similar and were much higher than that of Poraver. Both CPG and silica gel reactor columns gave the same limit of detection, 0.5 mM, and the response was still linear up to 150mM. The analysis time was 4-5 min per sample. The enzyme reactor column with urease immobilized on CPG gave a slightly better sensitivity, 4% higher than the reactor with silica gel. The life time of the immobilized urease on CPG and silica gel were more than 310h operation time (used intermittently over 7 months). Good agreement was obtained when urea concentrations of human serum samples determined by the flow injection conductimetric biosensor system was compared to the conventional methods (Fearon and Berthelot reactions). These were statistically shown using the regression line and Wilcoxon signed rank tests. The results showed that the reactor with urease immobilized on silica gel had the same efficiency as the reactor with urease immobilized on CPG.  相似文献   

19.
An optical array biosensor encapsulated with hydrolase and oxidoreductase using sol-gel immobilization technique has been fabricated for simultaneous analysis and screening of multiple samples to determine the presence of multianalytes which are clinically important in relation to renal failure. Urease and creatinine deiminase were used to detect urea and creatinine, while glucose oxidase and uricase were coimmobilized with horseradish peroxidase to quantify glucose and uric acid. Moreover, the concentrations of analytes in fetal calf serum were measured and quantified using the developed sensing system. The array biosensor showed good specificity for the simultaneous analysis of multiple samples for multianalytes without obvious cross-interference. The analytical ranges of the four analytes were between 0.01 and 10mM with detection limits of 2.5-80 microM. High precision with relative standard deviations of 3.8-9.2% (n=45) was also demonstrated. The reproducibility of array-to-array in 3 consecutive months was 5.4% (n=3). Moreover, the concentrations of analytes in fetal calf serum were 5.9 mM for urea, 0.13 mM for creatinine, 3.3mM for glucose, and 0.15 mM for uric acid, which were in good agreement with results obtained using the traditional spectroscopic methods. These results demonstrate the first use of a sol-gel-derived optical array biosensor for simultaneous analysis of multiple samples for the presence of multiple clinically important renal analytes.  相似文献   

20.
In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol–gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM−1 cm−2. The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号