首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hendler RW  Meuse CW 《Biochemistry》2008,47(19):5396-5405
The parallel model for the bacteriorhodopsin (BR) photocycle at neutral pH and a temperature near 20 degrees C contains an M-fast cycle with steps BR-->K-->L-->Mf-->N-->O-->BR and an M-slow cycle which contains steps BR-->K-->L-->Ms-->BR. With increasing actinic laser strength, the M-fast cycle at first rises faster than the M-slow cycle, but reaches saturation sooner and at a lower level than the M-slow cycle. The O-intermediate shows the same saturation behavior as Mf. In this paper, we show that the peak current of proton flux and the apparent voltages developed by this flux show the same saturation behavior as Ms, which is very different from that of both M f and O. It is further shown that most of the proton-charge displacement is connected with the step Ms-->BR. The optical and electrical data in these studies were collected simultaneously by a newly designed and built spectrometer which is described separately.  相似文献   

2.
Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular “lever,” whose one end links to a “piston” (the β-ionone ring) and the other end to a pump “relay station” (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular “lever” is moving up and down as marked by the position change of the “piston,” so as to trigger the gate of pore to open and close alternately. When the “piston” is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the “piston” is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.  相似文献   

3.
4.
5.
6.
Adding Ca2+ or other cations to deionized bacteriorhodopsin causes a blue to purple color shift, a result of deprotonation of Asp85. It has been proposed by different groups that the protonation state of Asp85 responds to the binding of Ca2+ either 1) directly at a specific site in the protein or 2) indirectly through the rise of the surface pH. We tested the idea of specific binding of Ca2+ and found that the surface pH, as determined from the ionization state of eosin covalently linked to engineered cysteine residues, rises about equally at both extracellular and cytoplasmic surfaces when only one Ca2+ is added. This precludes binding to a specific site and suggests that rather than decreasing the pKa of Asp85 by direct interaction, Ca2+ increases the surface pH by binding to anionic lipid groups. As Ca2+ is added the surface pH rises, but deprotonation of Asp85 occurs only when the surface pH approaches its pKa. The nonlinear relationship between Ca2+ binding and deprotonation of Asp85 from this effect is different in the wild-type protein and in various mutants and explains the observed complex and varied spectral titration curves.  相似文献   

7.
8.
9.
10.
Interaction of lanthanum ions (La3+) with 1,2 dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) causes an increase in Tc, the temperature of maximal excess heat capacity, and the width of the gel-to-liquid crystalline transition. At a mole ratio of La3+ to DPPC sufficient to remove the hydrocarbon chain tilt angle of DPPC, the changes in the thermodynamic parameters of the pretransition are minor, Tc and the width were unaltered and the enthalpy was reduced by only 10%. This suggests that the change in tilt angle is not a necessary concomitant of the pretransition.  相似文献   

11.
The dynamics and the spectra of the excited state of the retinal in bacteriorhodopsin (bR) and its K-intermediate at pH 0 was compared with that of bR and halorhodopsin at pH 6.5. The quantum yield of photoisomerization in acid purple bR was estimated to be at least 0.5. The change of pH from 6.5 to 2 causes a shift of the absorption maximum from 568 to 600 nm (acid blue bR) and decreases the rate of photoisomerization. A further decrease in pH from 2 to 0 shifts the absorption maximum back to 575 nm when HCl is used (acid purple bR). We found that the rate of photoisomerization increases when the pH decreases from 2 to 0. The effect of chloride anions on the dynamics of the retinal photoisomerization of acid bR (pH 2 and 0) and some mutants (D85N, D212N, and R82Q) was also studied. The addition of 1 M HCl (to make acid purple bR, pH 0) or 1 M NaCl to acid blue bR (pH 2) was found to catalyze the rate of the retinal photoisomerization process. Similarly, the addition of 1 M NaCl to the solution of some bR mutants that have a reduced rate of retinal photoisomerization (D85N, D212N, and R82Q) was found to catalyze the rate of their retinal photoisomerization process up to the value observed in wild-type bR. These results are explained by proposing that the bound Cl- compensates for the loss of the negative charges of the COO- groups of Asp85 and/or Asp212 either by neutralization at low pH or by residue replacement in D85N and D212N mutants.  相似文献   

12.
Yang L  Xu Y  Wang Y  Zhang S  Weng S  Zhao K  Wu J 《Carbohydrate research》2005,340(18):2773-2781
Lanthanide ions and erythritol form metal–alditol complexes with various structures. Lanthanum nitrate and erbium chloride coordinate to erythritol to give new coordination structures. The lanthanum nitrate–erythritol complex (LaEN), 2La(NO3)3·C4H10O4·8H2O, La3+ exhibits the coordination number of 11 (namely 11 polar atoms bound to one lanthanum) and is 11-coordinated to two hydroxyl groups from one erythritol molecule, six oxygen atoms from three nitrate ions and three water molecules. One erythritol molecule is coordinated to two La3+ ions and links the two metal ions together. The ratio of M:L is 2:1. The erbium chloride–erythritol complex (ErE), ErCl2·C4H9O4·2C2H5OH was obtained from ErCl3 and erythritol in aqueous ethanol solution and the structure shows that deprotonation reaction occurs in the reaction process. The Er3+ cation is 8-coordinated with three hydroxyl groups of one erythritol molecule, two hydroxyl groups from another erythritol molecule, two ethanol molecules, and one chloride ion. Erythritol provides its three hydroxyl groups to one erbium cation and two hydroxyl groups to another erbium cation, that is, one hydroxyl group is coordinated to two metal ions and therefore loses its hydrogen atom and becomes a oxygen bridge. Another chloride ion is hydrogen bonded in the structure. The results indicate the complexity of metal–sugar coordination.  相似文献   

13.
Bacteriorhodopsin functions as a light-driven proton pump in Halobacterium salinarium. The functional protein consists of an apoprotein, bacterioopsin, with seven transmembrane alpha helices together with a covalently bound all-trans retinal chromophore. In order to study the role of the interhelical loop conformations in the structure and function of bacteriorhodopsin, we have constructed bacterioopsin genes where each loop is replaced, one at a time, by a peptide linker consisting of Gly-Gly-Ser- repeat sequences, which are believed to have flexible conformations. These mutant proteins have been expressed in Escherichia coli, purified and reconstituted with all-trans retinal in l-alpha-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-(3-cholamidopropyl)dimethylammonio-1-propane sulfonate (CHAPS)/SDS and l-alpha-1,2-dihexanoylphosphatidylcholine (DHPC)/DMPC/SDS micelles. Wild-type-like chromophore formation was observed in all the mutants containing single loop replacements. In the BC and FG mutants, an additional chromophore band with an absorption band at about 480 nm was observed, which was in equilibrium with the 550 nm, wild-type band. The position of the equilibrium depended on temperature, SDS and relative DMPC concentration. The proton pumping activity of all of the mutants was comparable to that of wild-type bR except for the BC and FG mutants, which had lower activity. All of the loop mutants were more sensitive to denaturation by SDS than the wild-type protein, except the mutant where the DE loop was replaced. These results suggest that a specific conformation of all the loops of bR, except the DE loop, contributes to bR stability and is required for the correct folding and function of the protein. An increase in the relative proportion of DHPC in DHPC/DMPC micelles, which reduces the micelle rigidity and alters the micelle shape, resulted in lower folding yields of all loop mutants except the BC and DE mutants. This effect of micelle rigidity on the bR folding yield correlated with a loss in stability of a partially folded, seven-transmembrane apoprotein intermediate state in SDS/DMPC/CHAPS micelles. The folding yield and stability of the apoprotein intermediate state both decreased for the loop mutants in the order WT approximately BC approximately DE>FG>AB>EF> or =CD, where the EF and CD loop mutants were the least stable.  相似文献   

14.
15.
16.
17.
Pressure experiments with freeze-dried bacteriorhodopsin indicate that water is an essential part of the chromophore. This observation is combined with already known information on (a) the pH dependence of proton pumping, (b) the secondary protein-chromophore interaction with lysine-40, and (c) the proton transfer in the initial photochemical step to give a detailed structure of the active site and a mechanism for proton pumping which is consistent with the bacteriorhodopsin polypeptide sequence.  相似文献   

18.
Induction and repair of DNA lesions cell inactivation and repair of potentially lethal damages (PLD) were studied after the treatment of cultured cells with formaldehyde. Formaldehyde induced the appearance of a rapidly sedimentating DNA--membrane complex. This complex may contain up to 50% of choline and no more than 3-5% of leucine or lysine incorporated in the acid insoluble cell fraction, Inhibition of DNA synthesis, induction of single strand DNA breaks and/or alkali-labile sites increased with the raise of formaldehyde concentration. A good correlation is observed between with the raise of formaldehyde concentration. A good correlation is observed between with the raise of formaldehyde concentration. A good correlation is observed between the increasing DNA quantities in the rapid sedimentation complex and the cell lethality.  相似文献   

19.
Constraints on the proximity of the carboxyl carbons of the Asp-85 and Asp-212 side chains to the 14-carbon of the retinal chromophore have been established for the bR(555), bR(568), and M(412) states of bacteriorhodopsin (bR) using solid-state NMR spectroscopy. These distances were examined via (13)C-(13)C magnetization exchange, which was observed in two-dimensional RF-driven recoupling (RFDR) and spin diffusion experiments. A comparison of relative RFDR cross-peak intensities with simulations of the NMR experiments yields distance measurements of 4.4 +/- 0.6 and 4.8 +/- 1.0 A for the [4-(13)C]Asp-212 to [14-(13)C]retinal distances in bR(568) and M(412), respectively. The spin diffusion data are consistent with these results and indicate that the Asp-212 to 14-C-retinal distance increases by 16 +/- 10% upon conversion to the M-state. The absence of cross-peaks from [14-(13)C]retinal to [4-(13)C]Asp-85 in all states and between any [4-(13)C]Asp residue and [14-(13)C]retinal in bR(555) indicates that these distances exceed 6.0 A. For bR(568), the NMR distance constraints are in agreement with the results from recent diffraction studies on intact membranes, while for the M state the NMR results agree with theoretical simulations employing two bound waters in the region of the Asp-85 and Asp-212 residues. The structural information provided by NMR should prove useful for refining the current understanding of the role of aspartic acid residues in the proton-pumping mechanism of bR.  相似文献   

20.
Summary Drosophila males were exposed to a sublethal concentration of cyanide gas prior to the injection of formaldehyde solutions. Compared to the controls which only received formaldehyde the frequency of sex-linked lethals was increased after the cyanide pretreatment in altogether six independent experiments. These results are taken as further proof that formaldehyde exerts at least part of its mutagenic effects via the formation of peroxides. It is suggested that an excessive amount of hydrogen peroxide, due to inhibition of the cytochrome and catalase enzyme systems, favours the formation of a mutagenic, organic peroxide, presumably dihydroxydimethyl peroxide. The fact that formaldehyde exerts an inhibiting effect on catalase in its own right might be of importance for the interpretation of its mutagenic action.It was also observed that after cyanide pretreatment, the mutagenic effectiveness of a mixture of formaldehyde and hydrogen peroxide was lower than that of formaldehyde alone. These findings can be interpreted by assuming that high concentrations of dihydroxydimethyl peroxide or of a combination of cyanide and this peroxide, eliminate selectively germ cells with induced mutations. It is possible that the same explanation applies to the low mutagenic effectiveness of a mixture of formaldehyde and hydrogen peroxide compared with that of formaldehyde alone when both are preceded by cyanide.With 3 figures in the text  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号