首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simple sequence repeats (SSRs) or microsatellites are a common component of genomes but vary greatly across species in their abundance. We tested the hypothesis that this variation is due in part to AT/GC content of genomes, with genomes biased toward either high AT or high CG generating more short random repeats that are long enough to enhance expansion through slippage during replication. To test this hypothesis, we identified repeats with perfect tandem iterations of 1-6 bp from 25 protists with complete or near-complete genome sequences. As expected, the density and the frequency are highly related to genome AT content, with excellent fits to quadratic regressions with minima near a 50% AT content and rising toward both extremes. Within species, the same trends hold, except the limited variation in AT content within each species places each mainly on the descending (GC rich), middle, or ascending (AT rich) part of the curve. The base usages of repeat motifs are also significantly correlated with genome nucleotide compositions: Percentages of AT-rich motifs rise with the increase of genome AT content but vice versa for GC-rich subgroups. Amino acid homopolymer repeats also show the expected quadratic relationship, with higher abundance in species with AT content biased in either direction. Our results show that genome nucleotide composition explains up to half of the variance in the abundance and motif constitution of SSRs.  相似文献   

2.
Complete chromosome/genome sequences available from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces cerevisiae were analyzed for the occurrence of mono-, di-, tri-, and tetranucleotide repeats. In all of the genomes studied, dinucleotide repeat stretches tended to be longer than other repeats. Additionally, tetranucleotide repeats in humans and trinucleotide repeats in Drosophila also seemed to be longer. Although the trends for different repeats are similar between different chromosomes within a genome, the density of repeats may vary between different chromosomes of the same species. The abundance or rarity of various di- and trinucleotide repeats in different genomes cannot be explained by nucleotide composition of a sequence or potential of repeated motifs to form alternative DNA structures. This suggests that in addition to nucleotide composition of repeat motifs, characteristic DNA replication/repair/recombination machinery might play an important role in the genesis of repeats. Moreover, analysis of complete genome coding DNA sequences of Drosophila, C. elegans, and yeast indicated that expansions of codon repeats corresponding to small hydrophilic amino acids are tolerated more, while strong selection pressures probably eliminate codon repeats encoding hydrophobic and basic amino acids. The locations and sequences of all of the repeat loci detected in genome sequences and coding DNA sequences are available at http://www.ncl-india.org/ssr and could be useful for further studies.  相似文献   

3.
Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa.  相似文献   

4.
Genomic resources for peach, a model species for Rosaceae, are being developed to accelerate gene discovery in other Rosaceae species by comparative mapping. Simple sequence repeats (SSRs) are an important tool for comparative mapping because of their high polymorphism and transportability. To accelerate the development of SSR markers, we analyzed publicly available Rosaceae expressed sequence tags (ESTs) for SSRs. A total of 17,284 ESTs from almond, peach and rose were assembled into putatively non-redundant EST sets. For comparison, 179,099 ESTs from Arabidopsis were also used in the analysis. About 4% of the assembled ESTs contained SSRs in Rosaceae, which was higher than the 2.4% found in Arabidopsis. About half of the SSRs were found in the putative UTR, and the estimated average distance between SSRs in the UTR was 5.5 kb in rose, 5.1 kb in almond, 7 kb in peach and 13 kb in Arabidopsis. In the putative coding region, the estimated average distance was two to four times longer than in the UTR. Rosaceae ESTs containing SSRs were functionally annotated using the GenBank nr database and further classified using the gene ontology terms associated with the matching sequences in the SwissProt database. The detailed data including the sequences and annotation results are available from .  相似文献   

5.
Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence.

Availability  相似文献   


6.
7.
Chen M  Tan Z  Zeng G 《Bioinformation》2011,6(4):171-172
Simple sequence repeats (SSRs) are ubiquitous short tandem repeats, which are associated with various regulatory mechanisms and have been found in viral genomes. Herein, we develop MfSAT (Multi-functional SSRs Analytical Tool), a new powerful tool which can fast identify SSRs in multiple short viral genomes and then automatically calculate the numbers and proportions of various SSR types (mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats). Furthermore, it also can detect codon repeats and report the corresponding amino acid.  相似文献   

8.
9.
Simple sequence repeats (SSRs) composed of extensive tandem iterations of a single nucleotide or a short oligonucleotide are rare in most bacterial genomes, but they are common among Mycoplasma. Some of these repeats act as contingency loci in association with families of surface antigens. By contraction or expansion during replication, these SSRs increase genetic variance of the population and facilitate avoidance of the immune response of the host. Occurrence and distribution of SSRs are analyzed in complete genomes of 11 Mycoplasma and 3 related Mollicutes in order to gain insights into functional and evolutionary diversity of the SSRs in Mycoplasma. The results revealed an unexpected variety of SSRs with respect to their distribution and composition and suggest that it is unlikely that all SSRs function as contingency loci or recombination hot spots. Various types of SSRs are most abundant in Mycoplasma hyopneumoniae, whereas Mycoplasma penetrans, Mycoplasma mobile, and Mycoplasma synoviae do not contain unusually long SSRs. Mycoplasma hyopneumoniae and Mycoplasma pulmonis feature abundant short adenine and thymine runs periodically spaced at 11 and 12 bp, respectively, which likely affect the supercoiling propensities of the DNA molecule. Physiological roles of long adenine and thymine runs in M. hyopneumoniae appear independent of location upstream or downstream of genes, unlike contingency loci that are typically located in protein-coding regions or upstream regulatory regions. Comparisons among 3 M. hyopneumoniae strains suggest that the adenine and thymine runs are rarely involved in genome rearrangements. The results indicate that the SSRs in the Mycoplasma genomes play diverse roles, including modulating gene expression as contingency loci, facilitating genome rearrangements via recombination, affecting protein structure and possibly protein-protein interactions, and contributing to the organization of the DNA molecule in the cell.  相似文献   

10.
11.
Simple sequence repeat (SSR) markers are widely used in many plant and animal genomes due to their abundance, hypervariability, and suitability for high-throughput analysis. Development of SSR markers using molecular methods is time consuming, laborious, and expensive. Use of computational approaches to mine ever-increasing sequences such as expressed sequence tags (ESTs) in public databases permits rapid and economical discovery of SSRs. Most of such efforts to date focused on mining SSRs from monocotyledonous ESTs. In this study, we have computationally mined and examined the abundance of SSRs in more than 1.54 million ESTs belonging to 55 dicotyledonous species. The frequency of ESTs containing SSRs among species ranged from 2.65% to 16.82%. Dinucleotide repeats were found to be the most abundant followed by tri- or mono-nucleotide repeats. The motifs A/T, AG/GA/CT/TC, and AAG/AGA/GAA/CTT/TTC/TCT were the predominant mono-, di-, and tri-nucleotide SSRs, respectively. Most of the mononucleotide SSRs contained 15-25 repeats, whereas the majority of the di- and tri-nucleotide SSRs contained 5-10 repeats. The comprehensive SSR survey data presented here demonstrates the potential of in silico mining of ESTs for rapid development of SSR markers for genetic analysis and applications in dicotyledonous crops.  相似文献   

12.
Simple sequence repeats are predominantly found in most organisms. They play a major role in studies of genetic diversity, and are useful as diagnostic markers for many diseases. The simple sequence repeats database (SSRD) for the human genome was created for easy access to such repeats, for analysis, and to be used to understand their biological significance. The data includes the abundance and distribution of SSRs in the coding and non-coding regions of the genome, as well as their association with the UTRs of genes. The exact locations of repeats with respect to genomic regions (such as UTRs, exons, introns or intergenic regions) and their association with STS markers are also highlighted. The resource will facilitate repeat sequence analysis in the human genome and the understanding of the functional and evolutionary significance of simple sequence repeats. SSRD is available through two websites, http://www.ccmb.res.in/ssr and http://www.ingenovis.com/ssr.  相似文献   

13.
An in-silico analysis of simple sequence repeats (SSRs) in genomes of 32 species of potexviruses was performed wherein a total of 691 SSRs and 33 cSSRs were observed. Though SSRs were present in all the studied genomes their incident frequency ranged from 11 to 30 per genome. Further, 10 potexvirus genomes possessed no cSSRs when extracted at a dMAX of 10 and wherein present, the highest frequency was 3. SSR and cSSR incidence, relative density and relative abundance were non-significantly correlated with genome size and GC content suggesting an ongoing evolutionary and adaptive phase of the virus species. SSRs present primarily ranged from mono- to tri-nucleotide repeat motifs with a greatly skewed distribution across the coding and non-coding regions. Present work is an effort for the undergoing compilation and analysis of incidence, distribution and variation of the viral repeat sequences to understand their evolutionary and functional relevance.  相似文献   

14.
Simple sequence repeats (SSRs) are indel mutational hotspots in genomes. In prokaryotes, SSR loci can cause phase variation, a microbial survival strategy that relies on stochastic, reversible on-off switching of gene activity. By analyzing multiple strains of 42 fully sequenced prokaryotic species, we measure the relative variability and density distribution of SSRs in coding regions. We demonstrate that repeat type strongly influences indel mutation rates, and that the most mutable types are most strongly avoided across genomes. We thoroughly characterize SSR density and variability as a function of N→C position along protein sequences. Using codon-shuffling algorithms that preserve amino acid sequence, we assess evolutionary pressures on SSRs. We find that coding sequences suppress repeats in the middle of proteins, and enrich repeats near termini, yielding U-shaped SSR density curves. We show that for many species this characteristic shape can be attributed to purely biophysical constraints of protein structure. In multiple cases, however, particularly in certain pathogenic bacteria, we observe over enrichment of SSRs near protein N-termini significantly beyond expectation based on structural constraints. This increases the probability that frameshifts result in non-functional proteins, revealing that these species may evolutionarily tune SSR positions in coding regions to facilitate phase variation.  相似文献   

15.
Isolates of Fusarium obtained from Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) demonstrated potential as biological control agents against that same insect, which is a pest on Opuntia ficus-indica L Miller. The isolates belong to two species complexes: Fusarium incarnatum-equiseti (FIESC – five species) and Fusarium fujikuroi (FFSC – one species). Twenty-eight isolates of these fungi were characterised using seven Inter Simple Sequence Repeats (ISSR) primers. The UBC841 primer differentiated all the FIESC isolates studied and the single isolate of Fusarium pseudocircinatum O’Donnell & Nirenberg at a level greater than 90% similarity for the fragment sizes. The results indicated high genetic variability among those isolates, an important characteristic for biological control, increasing the chances of finding efficient fungi for insect control. The ISSR markers UBC834 and UBC841 were found to be efficient for characterising and differentiating (DNA fingerprinting) those fungi, and could be used in field monitoring.  相似文献   

16.
17.
Plant enolase: gene structure, expression, and evolution.   总被引:19,自引:0,他引:19       下载免费PDF全文
Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle.  相似文献   

18.
We have explored the possible role of SSR density in genome to generate biological information. In our study, we have checked the SSR (simple sequence repeats) status in virulent and non virulent genes of enteric bacteria to see whether the SSRs distribution contributes to virulence. The genome, plasmid and virulent genes sequences in fasta format were downloaded from NCBI GenBank and VFDB. The sequences were subjected to SSR analysis using software tool ssr.exe. The resulting data was pasted in excel sheet and further analyzed for percentage of each type of SSR. Higher nucleotide repeats have been observed in our study. Overall high density of SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. Frequency of A and T repeats is higher in the chromosome, plasmid and the virulence genes. However, in dinucleotide repeats the frequencies of GC/CG repeats are higher in genome, whereas plasmid has more of AT/TA repeats. Genome has trinucleotide repeats having predominantly G and C whereas plasmid has trinucleotide repeats having predominantly A and T. The repeat number obtained and percentage of repeats is higher in virulence genes as compared to other gene families. Due to the presence of this large number of SSRs, the organism has an enormous potential for generating this genomic and phenotypic diversity.  相似文献   

19.
Although molecular markers and DNA sequence data are now available for many crop species, our ability to identify genetic variation associated with functional or adaptive diversity is still limited. In this study, our aim was to quantify and characterize diversity in a panel of cultivated and wild sorghums (Sorghum bicolor), establish genetic relationships, and, simultaneously, identify selection signals that might be associated with sorghum domestication. We assayed 98 simple sequence repeat (SSR) loci distributed throughout the genome in a panel of 104 accessions comprising 73 landraces (i.e., cultivated lines) and 31 wild sorghums. Evaluation of SSR polymorphisms indicated that landraces retained 86% of the diversity observed in the wild sorghums. The landraces and wilds were moderately differentiated (F st=0.13), but there was little evidence of population differentiation among racial groups of cultivated sorghums (F st=0.06). Neighbor-joining analysis showed that wild sorghums generally formed a distinct group, and about half the landraces tended to cluster by race. Overall, bootstrap support was low, indicating a history of gene flow among the various cultivated types or recent common ancestry. Statistical methods (Ewens-Watterson test for allele excess, lnRH, and F st) for identifying genomic regions with patterns of variation consistent with selection gave significant results for 11 loci (approx. 15% of the SSRs used in the final analysis). Interestingly, seven of these loci mapped in or near genomic regions associated with domestication-related QTLs (i.e., shattering, seed weight, and rhizomatousness). We anticipate that such population genetics-based statistical approaches will be useful for re-evaluating extant SSR data for mining interesting genomic regions from germplasm collections.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
G R Pack  L Wong    C V Prasad 《Nucleic acids research》1986,14(3):1479-1493
The three-dimensional Poisson-Boltzmann equation for the distribution of counterion charge density around double helical DNA has been solved by an iterative procedure. These computations have been performed for 0.01M monovalent salt solutions. A systematic study of the ten possible sequences found among adjacent nucleotide base pairs is presented for the A, B, and C conformations of DNA. In addition, calculations of the electrostatic stabilities of these conformations of DNA allows for comparison of the charge accumulation around each of the three conformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号