首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The process of testicular maturation in relation to intrapuparial development was studied in the sheep nasal bot fly, Oestrus ovis L. (Diptera: Oestridae). After formation of the puparium during larval-pupal apolysis and the cryptocephalic pupal stage (approximately 24-72 h), spermatogonia had undergone mitotic divisions and sperm cysts had been formed. Five days after pupariation, spermatogonia transformed into primary spermatocytes during the phanerocephalic pupal stage, and secondary spermatocytes first appeared during the pupal-adult apolysis. Secondary spermatocytes began undergoing the second meiotic division by day 8 (transparent-eye pharate adult stage). By days 9 and 10, round spermatids were present and began to elongate by day 11. By day 12, the first bundles of tailed spermatozoa had appeared. By day 15 (the yellow-orange eye pharate adult stage), round, elongated, tailed and bundled spermatids were predominant and by day 17 differentiating spermatids occupied nearly 35% of the testicular cavity, and 60% was occupied by free sperm. By day 21 (the red-brown eye pharate adult stage), spermatozoa colonized the seminal vesicle. At emergence (approximately day 22), a complement of free sperm occupied the testis and the seminal vesicle, but groups of developing cells frequently remained in certain zones. Spermatogenesis was carried out after pupariation and spermiogenesis occurred during the pharate adult stage. After emergence, males possessed fully formed spermatozoa ready for ejaculation.  相似文献   

4.
In order to provide a basis for quantitative studies of murine spermatogenesis, we performed a DNA flow cytometric analysis on the mouse seminiferous tubules isolated at defined stages of the epithelial cycle by transillumination-assisted microdissection. Accurate stage identification was performed by examining spermatids in the adjacent tubule segments by phase-contrast microscopy. For flow cytometry, suspension of nuclei of spermatogenic cells was obtained by detergent treatment of isolated seminiferous tubules, and fresh samples were stained with propidium iodide. DNA histograms of the 12 stages of the mouse seminiferous epithelial cycle varied in a stage-specific manner. DNA histograms of stages I-VIII of the cycle were characterized by a hypofluorescent haploid peak, the location of which changed with the decreasing DNA dye (propidium iodide)-binding capacity of elongated spermatids. The absence of the hypohaploid peak and the high ratio of the cells with 4C amount of DNA to the cells with 1C amount of DNA characterized stages IX-XI of the cycle. Stage XII showed a high 2C peak, owing to a large population of secondary spermatocytes arisen from the first meiotic division. By using fluorescent beads as an internal volume standard cell numbers in defined stages were determined. These data provide a basis for quantitative studies of mouse spermatogenesis.  相似文献   

5.
In order to test the hypothesis that a lack of energy could be a cause of germ cell death at high temperatures, cryptorchid rats testes were infused with lactate, delivered by osmotic pumps over 3-15 days. In cryptorchid testes, the spermatids and spermatocytes were lost between 3 and 8 days. In cryptorchid testes supplemented with lactate, elongated spermatids persisted in a few seminiferous tubules at Day 15. Elimination of round spermatids occurred progressively between 3 and 15 days, mostly at stage VIII. The loss of spermatocytes increased after 8 days, and 30% of seminiferous tubules still contained meiotic or meiotic plus spermiogenetic cells at Day 15. After 8 days, the chromatin of step 8 round spermatids was abnormal and nuclear elongation did not commence. The Sertoli cell cytoplasm that was retracted toward the basal compartment of the seminiferous epithelium could not hold the germ cells of the adluminal compartment. Therefore, attachment of germ cells to Sertoli cells and the supply of lactate seem necessary for the development of germ cells at high temperatures. The improvement in spermatogenesis in cryptorchid supplemented testes for several days is a new finding.  相似文献   

6.
7.
NGF appears to be involved in spermatogenesis. However, mice lacking NGF or TrkA genes do not survive more than a few days whereas p75(NTR) knockout mice are viable and fertile. Therefore, we addressed the effect of betaNGF on spermatogenesis by using the systems of rat germ cell culture we established previously. betaNGF did not modify the number of Sertoli cells, pachytene spermatocytes, secondary spermatocytes nor the half-life of round spermatids, but increased the number of secondary meiotic metaphases and decreased the number of round spermatids formed in vitro. These effects of betaNGF were reversible and maximal at about 4 x 10(-11) M. Conversely, K252a, a Trk-specific kinase inhibitor, enhanced the number of round spermatids above that of control cultures. The presence of betaNGF and its receptors TrkA and p75(NTR) was investigated in testis sections, in Sertoli cell and germ cell fractions, and in germ cell and Sertoli cell co-cultures. betaNGF was detected only in germ cells from pachytene spermatocytes of stages VII up to spermatids of stages IX-X. TrkA and p75(NTR) were detected in Sertoli cells and in these germ cells. Taken together, these results indicate that betaNGF should participate in an auto/paracrine pathway of regulation of the second meiotic division of rat spermatocytes in vivo.  相似文献   

8.
The localization of albumin and transferrin was examined immunohistochemically in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. These proteins appeared as early as the 13th day of gestation in migrating primordial germ cells before Sertoli cell differentiation. In the fetal testis, strong immunoreactivity was only detected in the gonocytes. In the prepubertal testis, spermatogonia, primary spermatocytes, and some Sertoli cells accumulate albumin and transferrin. At puberty, different patterns of immunostaining of the germ cells were observed at the various stages of the cycle of the seminiferous epithelium. Diplotene spermatocytes at stage XIII, spermatocytes in division at stage XIV, and round spermatids at stages IV–VIII showed maximal staining. Labeling was evident in the cytoplasm of adult Sertoli cells. Albumin and transferrin staining patterns paralleled each other during ontogenesis.  相似文献   

9.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

10.
Expression of mRNAs in the rat testis encoding cyclic AMP (cAMP)-dependent protein kinases (PKAs) was studied. A microdissection method was used to isolate 10 pools of seminiferous tubules representing various stages of the cycle of the seminiferous epithelium in combination with Northern blots and in situ hybridization. The results showed a differential expression of the four isoforms of the regulatory subunits (PKA-R) at various stages of the cycle. RI alpha mRNA was detected at approximately the same levels at all stages while expression of RI beta mRNA was low at stages XIII-III, started to increase at stages IV-V, and reached a maximum at stages VIII-XI. The level of RII alpha mRNA was low at stages II-VI, increased markedly at stage VIIa,b, and reached maximal levels at stages VIIc,d and VIII, followed by a reduced expression at later stages, RII beta mRNA levels increased significantly at stage VI with maximal levels at stages VII and VIII. In situ hybridization of sections from the adult rat testis revealed RI alpha mRNA in the layers of pachytene spermatocytes and round spermatids of all stages. RI beta mRNA was detected over late pachytene spermatocytes and round spermatids of stages VII-XIII. RII alpha mRNA was seen in the layers of round spermatids of stages VII-VIII and elongating spermatids of later stages while RII beta mRNA was detected only in the round spermatid region of stages VII-VIII and in some tubules of stages I-VI. These data show that mRNAs encoding PKA-R are expressed in a stage-specific manner in differentiating male germ cells with different patterns of expression for each subunit; this suggests specific roles for these protein kinases at different times of spermatogenesis.  相似文献   

11.
Adult rams were hypophysectomized and treated for 20 days with testosterone (2 X 0.25 g/day), PMSG (2 X 300 i.u./day) or hCG (2 X 250 i.u./day), or for 40 days with testosterone (2 X 0.25 g/day). All treatments maintained a normal concentration of testosterone within the seminiferous tubules. Quantitative histological analysis showed that (1) the differentiation from A0 to A1 spermatogonia was maintained by PMSG or hCG but not completely by testosterone; (2) the transition from intermediate spermatogonia to primary spermatocytes was maintained only by PMSG but not by testosterone or hCG; (3) meiotic prophase and spermiogenesis were maintained by the three hormones but there were qualitative abnormalities in the spermatids. These results suggest that in the ram, the differentiation of renewing stem spermatogonia is under LH control and that the last stages of spermatogonial multiplication, from intermediate to B spermatogonia and to primary spermatocytes, are under the control of the FSH-like activity of PMSG.  相似文献   

12.
LANCL1 (LanC-like protein 1) is related to the bacterial LanC (lanthionine synthetase C) family, which is involved in the biosynthesis of antimicrobial peptides. Highest expression levels of LANCL1 are found in testes and brain, two organs that exist behind blood-tissue barriers. In the mouse, the establishment of an impermeable blood-testis barrier occurs between day 10-16 post natal (pn). Differential display analysis showed that the expression level of LANCL1 mRNA in mouse testes was very low until day 16 pn, but increased gradually from day 16 pn to reach a maximum on days 22-24 pn followed by a slight reduction from day 26 pn to adult animals. Thus, the expression of LANCL1 mRNA is initiated following the establishment of the blood-testis barrier. In situ hybridisation revealed that LANCL1 mRNA was induced in diplotene spermatocytes, which appear for the first time in mouse testes between days 18 and 20 pn, verifying the expression profile determined by differential display. LANCL1 mRNA level remained high in the meiotic division phase and in early round spermatids, but was down regulated in elongating spermatids and it was undetectable in step 9 elongating spermatids in stage IX (as defined by Russel et al., 1990). The steady decrease in expression level from round spermatids in stage I to elongating spermatids in stage IX suggested that LANCL1 mRNA was not transcribed in spermatids. LANCL1 expression in rat testes was initiated already in pachytene spermatocytes in stage IX, but otherwise similar to mouse.  相似文献   

13.
In vitro differentiation of germ cells in rat seminiferous tubule segments at stages II-III of the epithelial cycle was studied. DNA flow cytometry was used for quantitation of absolute cell numbers from the cultured tubule segments that were compared to freshly isolated stages of the cycle, as identified by transillumination stereomicroscopy of the seminiferous tubules and phase-contrast microscopy of live cell squashes. Spermatogonia and spermatocytes from stages II-III showed normal morphological differentiation during 7 days in vitro. Round spermatids differentiated to Step 7 of spermiogenesis but Step 16 spermatids failed to develop. Acid phosphatase activity in the spermatogenic cells changed normally during the culture. As compared with freshly isolated control tubule segments, 35% of round spermatids and 42% of pachytene spermatocytes were present in culture after 7 days. The cell numbers recovered from defined stages by DNA flow cytometry were close to those found in morphometric studies. Flow cytometry is an efficient quantitation method for cells liberated from seminiferous epithelium. Spermatogonia, spermatocytes, and early spermatids are able to differentiate in vitro, but spermatids approaching the elongation (acrosome) phase, and particularly the maturation phase, fail to differentiate under present culture conditions.  相似文献   

14.
Cytokinesis, the final stage of cell division, bisects the cytoplasm into two daughter cells. In mitotic cells, this process depends on the activity of non-muscle myosin II (NMII), a family of actin-binding motor-proteins that participate in the formation of the cleavage furrow. The relevance of NMII for meiotic cell division, however, is poorly understood. The NMII family consists of three members, NMIIA, NMIIB, and NMIIC, containing different myosin heavy chains (MYH9, MYH10, and MYH14, respectively). We find that a single non-muscle myosin II, NMIIB, is required for meiotic cytokinesis in male but not female mice. Specifically, NMIIB-deficient spermatocytes exhibit cytokinetic failure in meiosis I, resulting in bi-nucleated secondary spermatocytes. Additionally, cytokinetic failure at meiosis II gives rise to bi-nucleated or even tetra-nucleated spermatids. These multi-nucleated spermatids fail to undergo normal differentiation, leading to male infertility. In spite of the presence of multiple non-muscle myosin II isoforms, we demonstrate that a single member, NMIIB, plays an essential and non-redundant role in cytokinesis during meiotic cell divisions of the male germline.  相似文献   

15.
Apoptosis in testicular germ cells has been demonstrated in many mammalian species. However, little is known about the stallion (Equus caballus) and rates of apoptosis during spermatogenesis. Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable method for identification and quantification of apoptotic germ cells in histological tissue sections from stallion testis. Seminiferous tubules from eight stallions with normal testis size and semen quality were evaluated according to stage of seminiferous epithelium to determine the germ cell types and stages where apoptosis most commonly occurs. Spermatogonia and spermatocytes were the most common germ cell types labeled by the TUNEL assay. A low rate of round and elongated spermatids were labeled by the TUNEL assay. Mean numbers of TUNEL-positive germ cells per 100 Sertoli cell nuclei were highest in stages IV (15.5 +/- 1.0) and V (13.5 +/- 1.1) of the seminiferous epithelial cycle (P < 0.001). An intermediate level of apoptosis was detected in stage VI (P < 0.02). These stages (IV-VI) correspond to meiotic divisions of primary spermatocytes and mitotic proliferation of B1 and B2 spermatogonia. Establishing basal levels of germ cell apoptosis is a critical step towards understanding fertility and the role of apoptosis in regulating germ cell numbers during spermatogenesis.  相似文献   

16.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

17.
18.
Dissociated spermatogenic cells were cultivated within the collagen matrix at low cell density. The largest cell type in the culture was identified as the primary spermatocytes by their size and the morphological characteristics revealed by ultra-thin sections. Chromosome analysis showed that about 90% of the cells examined were either in first or second meiosis. Within the collagen matrix, the fates of 282 single primary spermatocytes at meiotic stage in diakinesis or metaphase were followed. In a few days, most of them gave rise to four spermatids, passing through first and second meiotic divisions. About 80% of the spermatids formed motile flagella. They grew about 20–60 μm a day. The final state of the differentiation attained in our culture conditions was the spermatids with localized spherical nuclei and motile flagella, about 500 μm in length after 1-month's culture. Ultra-thin sections of the spermatids show that the rings, neck-pieces, and acrosomes developed in the cells.  相似文献   

19.
Mice lacking the TBP-related factor 2 (TRF2) gene, which is highly expressed in the testis, have a severe defect in spermiogenesis. Here we show that the expression of TRF2 is both cell type- and stage-specific. TRF2 expression was first detected in the late pachytene spermatocytes at stage VIII and increased throughout the subsequent stages. After meiotic divisions, the TRF2 expression declined continuously in round spermatids during progression from stage I to stage V. This observation is consistent with an essential regulatory role of TRF2 in male germ cell differentiation during spermatogenesis.  相似文献   

20.
Cultured testes and spermatocytes from the frog Xenopus laevis have been incubated (40-42 h) with adriamycin or colcemid followed by quantitation of chromosome aberrations in secondary spermatocytes and quantitation of micronuclei in secondary spermatocytes, early round spermatids, and round spermatids with acrosomal vacuoles (AV) at 18-162 h of culture. Micronucleus frequencies were consistently higher in secondary spermatocytes relative to round spermatids after exposure to either adriamycin or colcemid due to a higher rate of micronucleus formation during meiosis I compared to meiosis II. Also, some of the micronuclei formed during meiosis I did not survive meiosis II to form micronucleated spermatids. Micronucleus formation occurred in 3-7% of secondary spermatocytes with detectable chromosome aberrations, depending upon drug treatment. Thus, the ratio of micronuclei to total chromosome aberrations in secondary spermatocytes was always higher in colcemid-treated cells compared to adriamycin-treated cells following 18- and 42-h treatment periods. Adriamycin induced significant increases in micronuclei in both secondary spermatocytes and spermatids after 162 h of culture, the time for initial pachytene stages to develop into secondary spermatocytes and spermatids. The data show that cultured testes and spermatocytes from Xenopus may be used to quantify specific meiotic chromosome aberrations induced by both clastogens and spindle poisons using either a rapid secondary spermatocyte micronucleus assay or meiotic chromosome analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号