首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For epidemiological studies and control programs of leishmaniasis, taxonomic identification of the etiologic agent of the disease in the insect vector is of critical importance. The implementation of molecular techniques such as the polymerase chain reaction (PCR) has permitted great advances in the efficacy and sensitivity of parasite identification. Previously, these investigations involved labor-intensive dissections and required expert personnel. The present work evaluates the effects of storage methods of phlebotomine samples in the optimization of PCR identification of Leishmania. Females of Lutzomyia longipalpis, from the colony of the Instituto Nacional de Salud, were experimentally infected with Leishmania chagasi (= L. infantum), from the upper Magdalena Valley (Quipile, Cundinamarca, Colombia). The infected insects were preserved in three solutions: 100% ethanol, 70% ethanol, and TE; subsamples of each class were stored at -80 degrees C, -20 degrees C and room temperature. To determine infection rates, samples were dissected and screened microscopically. Chelex 100 was used for extraction of total Leishmania DNA. For PCR amplification, the kinetoplastic minicircle DNA primers OL1 and OL2 of Leishmania were used, and the products were visualized by electrophoresis in 1% agarose gels. For each of the 3 storage conditions, amplifications were successful, producing a approximately 120 base pair product unique to Leishmania. The results demonstrated the advantage of PCR as a routine screening method for detecting infected flies in endemic foci of visceral leishmaniasis. Since storage method did not affect PCR amplification success, the most cost effective method -70% ethanol at room temperature--is the option recommended for storing entomological samples in vector incrimination studies.  相似文献   

2.
Lutzomyia evansi is the vector of Leishmania chagasi in northern Colombia. Differences in feeding success were revealed, when this phlebotomine sand fly was fed on five species of small mammal hosts from an endemic focus of visceral leishmaniasis. In each trial, 50 female sand flies were provided access to similar-sized depilated areas of the hind foot of each of 44 individual mammals and allowed to feed for 30 minutes. The number of engorged sand flies was counted at the end of each trial and compared among host species by analysis of variance and Tukey's multiple comparisons test. Sand flies fed least successfully on Sciurus granatensis, a common squirrel in the endemic area. It has not been found infected with L. chagasi. Intermediate numbers of sand flies engorged on Heteromys anomalus and Zygodontomys brevicauda, but these two mammals have not been found infected with L. chagasi and are not expected to be important in transmission. Sand flies fed most successfully on Didelphis marsupialis and Proechimys canicollis. These are the two most abundant mammals in the endemic area and frequently are infected. Results provided further evidence that these two species are the wild mammals with the greatest impact on transmission of L. chagasi in northern Colombia.  相似文献   

3.
Visceral Leishmaniasis is an endemic disease in Brazil caused by Leishmania infantum chagasi and its main vector species is the sand fly Lutzomyia longipalpis. Epidemiological studies have used conventional PCR techniques to measure the rate of infection of sand flies collected in the field. However, real-time PCR can detect lower parasite burdens, reducing the number of false negatives and improving the quantification of Leishmania parasites in the sand fly. This study compared genes with various copy numbers to detect and quantify L. infantum chagasi in L. longipalpis specimens by real-time PCR. We mixed pools of 1, 10 and 30 male sand flies with various amounts of L. infantum chagasi, forming groups with 50, 500, 5000 and 50,000 Leishmania parasites. For the amplification of L. infantum chagasi DNA, primers targeting kDNA, polymerase α and the 18S ribosome subunit were employed. Parasites were measured by absolute and relative quantification. PCR detection using the amplification of kDNA exhibited the greatest sensitivity among the genes tested, showing the capacity to detect the DNA equivalent of 0.004 parasites. Additionally, the relative quantification using these primers was more accurate and precise. In general, the number of sand flies used for DNA extraction did not influence Leishmania quantification. However, for low-copy targets, such as the polymerase α gene, lower parasite numbers in the sample produced inaccurate quantifications. Thus, qPCR measurement of L. infantum chagasi in L. longipalpis was improved by targeting high copy-number genes; amplification of high copy-number targets increased the sensitivity, accuracy and precision of DNA-based parasite enumeration.  相似文献   

4.
In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.  相似文献   

5.
Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.  相似文献   

6.
A seminested PCR assay was developed in order to amplify the kinetoplast minicircle of Leishmania species from individual sand flies. The kinetoplast minicircle is an ideal target because it is present in 10,000 copies per cell and its sequence is known for most Leishmania species. The two-step PCR is carried out in a single tube using three primers, which were designed within the conserved area of the minicircle and contain conserved sequence blocks. The assay was able to detect as few as 3 parasites per individual sand fly and to amplify minicircle DNA from at least eight Leishmania species. This technique permits the processing of a large number of samples synchronously, as required for epidemiological studies, in order to study infection rates in sand fly populations and to identify potential insect vectors. Comparison of the sequences obtained from sand flies and mammal hosts will be crucial for developing hypotheses about the transmission cycles of Leishmania spp. in areas of endemicity.  相似文献   

7.

Background

Visceral Leishmaniasis (VL) is a life threatening neglected infectious disease in the Indian subcontinent, transmitted by the bite of female sand flies. Estimation of the infectivity in the vector population, collected in different seasons, may be useful to better understanding the transmission dynamics of VL as well as to plan vector control measures.

Methodology

We collected sand flies from highly endemic regions of Bihar state, India for one year over three seasons. The species of the sand flies were confirmed by species-specific PCR-RFLP. Leishmania donovani infection was investigated in 1397 female Phlebotomus argentipes using PCR, targeting the Leishmania specific minicircle of the kDNA region. Further, the parasitic load in the infected sand flies was measured using quantitative PCR.

Conclusion

Though sand flies were most abundant in the rainy season, the highest rate of infection was detected in the winter season with 2.84% sand flies infected followed by the summer and rainy seasons respectively. This study can help in vector elimination programmes and to reduce disease transmission.  相似文献   

8.
Leishmania infantum, an etiologic agent of zoonotic visceral leishmaniasis, is widespread among foxhounds in the United States. Although sand flies are widely distributed throughout the United States, epidemiological data do not support a major role for sand flies in the transmission of L. infantum in foxhounds in this country. Congenital transmission of human visceral leishmaniasis is reported in humans and might also occur in dogs. We have previously isolated L. infantum from Virginia foxhounds and used this isolate (LIVT-1) to experimentally infect beagles. Four female beagles, chronically infected with LIVT-1, were bred to a male beagle chronically infected with L. infantum chagasi. One beagle was able to maintain her pregnancy, and 4 puppies were delivered by cesarean section. One puppy was malformed and autolytic at delivery, and tissues were not collected or analyzed. The remaining puppies were killed at the time of cesarean section, and selected tissues were collected for parasite culture and PCR. Promastigotes were not cultured from tissues in any of the puppies. Leishmania sp. DNA was detectable by PCR in liver, bone marrow, and heart from all 3 puppies and in the spleen, lymph node, kidney, and placenta in 2 puppies. Placental tissue from the dam was PCR negative. This is the first report of maternal transmission of a North American isolate of L. infantum from an experimentally infected dog.  相似文献   

9.
Infective stages of Leishmania (Leishmania) amazonensis, capable of producing amastigote infections in hamster skin, were shown to be present in the experimentally infected sandfly vector Lutzomyia flaviscutellata 15, 25, 40, 49, 70, 96 and 120 hours after the flies had received their infective blood-meal. Similarly, infective stages of Leishmania (L.) chagasi were demonstrated in the experimentally infected vector Lu. longipalpis examined 38, 50, 63, 87, 110, 135, 171 and 221 hours following the infective blood-meal, by the intraperitoneal inoculation of the flagellates into hamsters. The question of whether or not transmission by the bite of the sandfly is dependent on the presence of "metacyclic" promastigotes in the mouthparts of the vector is discussed.  相似文献   

10.
Leishmania infected of Lutzomyia spp. are rare in endemic areas. We tested the hypothesis that there is clustering of infected vectors by combining pinpoint capture with sensitive L. braziliensis kDNA minicircle specific PCR/dot blot in an endemic area in the State of Bahia. Thirty out of 335 samples (10 to 20 sand flies/sample; total of 4,027 female sand flies) were positive by PCR analysis and dot blot leading to a underestimated overall rate of 0.4% positive phlebotomines. However, 83.3% of the positive samples were contributed by a single sector out of four sectors of the whole studied area. This resulted in a rate of 1.5% Leishmania positive phlebotomines for this sector, far above rates of other sectors. Incidence of American cutaneous leishmaniasis cases for this sector was about twice that for other sectors. Our results show that there is a non-homogeneous distribution of Leishmania-infected vectors. Such a clustering may have implications in control strategies against leishmaniasis, and reinforces the necessity of understanding the ecological and geographical factors involved in leishmanial transmission.  相似文献   

11.
The role of Proechimys semispinosus as reservoir of Leishmania (Viannia) panamensis on the Colombian Pacific coast was experimentally evaluated. The susceptibility to L. chagasi also was assessed to determine the utility of this rodent as a model for studying reservoir characteristics in the laboratory. Wild-caught animals were screened for natural trypanosomatid infections, and negative individuals were inoculated intradermally (ID) in the snout or feet with 10(7) promastigotes of L. panamensis. L. chagasi was inoculated intracardially (10(7) promastigotes) or ID in the ear (10(8) promastigotes). PCR-hybridization showed that 15% of 33 spiny rats were naturally infected with L. Viannia sp. Animals experimentally infected with L. panamensis developed non-ulcerated lesions that disappeared by the 7th week post-infection (p.i.) and became more resistant upon reinfection. Infectivity to sand flies was low ((1/2)0-(1/4)8 infected/fed flies) and transient, and both culture and PCR-hybridization showed that L. panamensis was cleared by the 13th week p.i. Animals inoculated with L. chagasi became subclinically infected and were non-infective to sand flies. Transient infectivity to vectors of spiny rats infected with L. panamensis, combined with population characteristics, e.g., abundance, exploitation of degraded habitats and high reproductive rates, could make them epidemiologically suitable reservoirs.  相似文献   

12.
Leishmania infection in humans, dogs and sandflies was examined in the endemic visceral leishmaniasis (VL) municipality of Raposa, state of Maranh?o, Brazil. In this study, we examined Leishmania chagasi infection in the blood serum of both humans and Canis familiaris and the natural Leishmania sp. infection rate in the sandfly vector, Lutzomyia longipalpis. Enzyme-linked immunosorbent assay, indirect immunofluorescence reaction and polymerase chain reaction were performed to detect Leishmania infections in humans, dogs and sandflies, respectively. Overall, 186 out of 986 studied human beings were infected with L. chagasi parasites, representing an infection prevalence of 18.9%. An even higher infection rate was detected in dogs, where 66 (47.8%) out of 138 were infected. Among all Lu. longipalpis captured (n = 1,881), only 26.7% were females. The Leishmania infection frequency for the vector Lu. longipalpis was 1.56%. Remarkably, all infected sandflies were found in the peridomiciliary area. Furthermore, a high incidence of asymptomatic forms of VL in the human and canine populations was observed. The results of this study suggest autochthonous transmission of L. chagasi in this endemic area for visceral leishmaniasis because infection by Leishmania sp. was identified in all important elements of the transmission chain.  相似文献   

13.
A study was undertaken to compare the susceptibility of laboratory-reared female Lutzomyia longipalpis to infection by different species or strains of New World Leishmania. The sand flies proved to be highly susceptible to infection by a strain of Le. guyanensis, with flagellates developing in all (18/18) of the specimens examined. A lower infection rate of 37% (10/27) was recorded in flies exposed to infection by a strain of Le. amazonensis. Flagellates developed in 13% (6/46) of the sand flies that blood fed on dogs in the early stage of experimental infection with an old laboratory strain of Le. chagasi. In contrast, promastigotes did not develop in sand flies that blood fed on dogs with naturally acquired Le. chagasi. The naturally infected dogs were in an advanced stage of disease. Flagellates developed in 9% (3/32) of the sand flies that blood fed on lesions of hamsters infected with a strain of Le. braziliensis and in 9% (3/34) of those that fed on hamsters with lesions due to a parasite of the mexicana complex (strain MHOM/BR/73/BH121). Sand flies did not develop flagellate infections after blood feeding on hamsters bearing lesions induced by strain MHOM/BR/71/BR49. Factors influencing the susceptibility of Lu. longipalpis to infection by New World species of Leishmania are discussed.  相似文献   

14.
ABSTRACT. Leishmania differentiation in the gut of phlebotomine sand flies was evaluated based on five light and electron microscopic studies of natural (Leishmania panamensis/Lutzomyia gomezi, Leishmania chagasi/Lutzomyia longipalpis) and unnatural (Leishmania mexicana/Lutzomyia abonnenci, Leishmania panamensis/Phlebotomus papatasi, Leishmania major/Lutzomyia longipalpis) life cycles. In the bloodmeal, transformation of amastigotes into stumpy promastigotes occurred before or during division. Further division in pairs or rosettes resulted in the development of spatulate and/or elongate nectomonad (free-swimming) promastigotes. Elongate, short, and metacyclic nectomonad promastigotes, and nectomonad paramastigotes were present in the midgut lumen. Dividing short promastigotes predominated in the cardia, and appeared to generate metacyclic forms which were observed in three life cycles. Haptomonad (attached) forms of Leishmania panamensis in the hindgut were primarily spatulate promastigotes (natural host) or pear-shaped promastigotes (unnatural host); paramastigotes and dividing forms were rare. At the stomodeal valve, short haptomonad promastigotes predominated in unnatural hosts, while both short and pear-shaped haptomonads were abundant, along with paramastigotes in natural hosts. Haptomonad paramastigotes and pear-shaped promastigotes colonized the esophagus, while paramastigotes predominated in the pharynx. Metacyclics were free-swimming in the lumen of the foregut.  相似文献   

15.
Abstract. Abundance of the sandfly Lutzomyia longipalpis , the vector of Leishmania chagasi , was surveyed using CDC light-suction traps in fifteen villages and 180 homesteads on Marajo island, Para State, Brazil. Flies were most abundant in cultivated areas, secondary growth and open woodland, away from savanna grassland and forest. Within homesteads, the abundance of flies in animal sheds was weakly associated with the number of hosts kept therein, and inversely related to the number elsewhere, both human and animal. Houses harboured more flies if dogs were present and if the house had: a roof of thatch rather than of tiles or tin; a thatched roof which had not been treated with insecticide; relatively more holes in walls and roof. The sex ratio of flies was more male-biased at higher densities. We weigh the importance of these variables as risk factors for Le.chagasi infection.  相似文献   

16.
Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial 16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical importance in addition to their role in Leishmania transmission.  相似文献   

17.
The minicircle molecules present in the kinetoplast DNA (kDNA) network constitute a particularly useful molecular tool because they are a multicopy target and present a variable region that differs among minicircle classes in the same network. Using the polymerase chain reaction (PCR) and a set of primers directed outwardly from the minicircle conserved region, it is possible to prepare molecular probes representing the pool of variable regions from the different minicircle classes in the kDNA. In order to examine the specificity of the minicircle variable region as hybridization probes in Leishmania (Viannia) species, such fragments were amplified from reference strains and from a panel of isolates representing the zymodeme diversity of Leishmania (Viannia) in Colombia. The size of the amplified products was conserved in Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, and Leishmania (Viannia) panamensis (650 bp) and diverged in Leishmania (Viannia) equatorensis and Leishmania (Viannia) colombiensis (850 bp). The amplified products were further hybridized to variable region pools of Leishmania braziliensis, Leishmania panamensis, Leishmania guyanensis, and Leishmania equatorensis reference strains. The results obtained from the hybridization experiments support this approach as a means of defining relationships among strains. Hybridization allowed homologies to be perceived, whereas restriction fragment length analysis of the amplified products yielded strain-specific profiles. Apparently, L. (V.) equatorensis and L. (V.) colombiensis minicircle variable regions have no or only low homology with those of other Leishmania (Viannia) species, showing the divergence of those species within the subgenus.  相似文献   

18.
Abstract We have compared the sequences of a major class of kinetoplast DNA (kDNA) minicircle (pLURkE3) of Leishmania strain UR6 with other minicircle sequences from different Leishmania species. Alignment of these sequences allowed the selection of a pair of oligonucleotides suitable as primers in polymerase chain reaction (PCR) which is specific for Leishmania parasites. PCR with this genus-specific primer set is capable of detecting 1 femtogram of kDNA. These primers have been tested with kDNAs from both old world and new world Leishmania species. The results indicate that the primers may be suitable for detection of any kind of leishmaniasis.  相似文献   

19.
A natural case of co-infection by Leishmania and Trypanosoma is reported in a dog (Canis familiaris) in south- western state of Mato Grosso do Sul, Brazil. Both amastigote and trypomastigote forms were observed after Giemsa staining of cytological preparations of the dog's bone marrow aspirate. No parasite was detected using medium culture inoculation of the sample. DNA obtained from the bone marrow aspirate sample and from the blood buffy coat was submitted to polymerase chain reaction (PCR) with a set of rDNA-based primers S4/S12. The nucleotide sequence of the PCR product was identical to that of Trypanosoma (Trypanozoon) evansi. The S4/S12 PCR was then used as template in a nested-PCR using a specific Leishmania set S17/S18 as primers, to explain the amastigote forms. The nucleotide sequence of the new PCR product was identical to that of Leishmania (Leishmania) chagasi. This case, as far as we know, is the first report of a dog co-infected with these parasites, suggesting that besides L. (L.) chagasi, the natural transmission of T. (T.) evansi occurs in the area under study.  相似文献   

20.
Leishmania chagasi, which causes visceral leishmaniasis in South America, is an obligate intracellular protozoan. Production of nitric oxide by macrophages during the inflammatory response is one of the main microbicidal mechanisms against this parasite. The goal of this study was to evaluate whether L. chagasi infection causes DNA damage in peripheral blood and spleen cells of Balb/c mice and whether such damage may be related to NO production. Balb/c mice were either infected with L. chagasi or maintained as controls. The single-cell gel electrophoresis (comet) assay was used to measure DNA damage in peripheral blood and spleen cells, and the Griess reaction was used to measure NO production in the spleen. L. chagasi infection induced DNA damage in peripheral blood and spleen cells of infected mice. Macrophages from the control group, challenged with L. chagasi, showed significantly (p<0.05) greater NO production, compared to non-challenged cells. Treatment of spleen cells with N(G)-monomethyl-l-arginine (LNMMA) caused a significant reduction of NO production and DNA damage (p<0.05). Our results indicate that L. chagasi induces DNA damage in the peripheral blood and spleen cells and that NO not only causes killing of the parasite but also induces DNA damage in adjacent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号