首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vâlcu CM  Schlink K 《Proteomics》2006,6(14):4166-4175
Protein extraction from plant samples is usually challenging due to the low protein content and high level of contaminants. Therefore, the 2-DE pattern resolution is strongly influenced by the procedure of sample preparation. Efficient solubilization of proteins strictly depends on the chaotrope and detergent in the extraction buffer. Despite the large number of detergents that have been developed for the use in protein extraction and IEF, there is no single compound able to efficiently extract proteins from any source. Hence, optimization has to be performed for each type of sample. We tested several chaotrope/detergent combinations to achieve optimal solubilization and separation of proteins from Norway spruce [Picea abies (L.) H. Karst.] needles and European beech (Fagus sylvatica L.) leaves and roots. The same chaotrope mixture (7 M urea, 2 M thiourea) was found to be suitable for the extraction and separation of proteins from all samples. Nonetheless, the efficiency of the surfactants tested varied between samples so that optimal extraction and separation was achieved with different detergents or combination of detergents for each sample. The 2-DE separation of spruce needle proteins was optimal in a mixture of two zwitterionic detergents (2% CHAPS and 2% decyl dimethylammonio propanesulfonate). Beech proteins were best separated in buffers containing sugar-based detergents (2% n-octyl beta-D-glucopiranoside in the case of leaf samples and 2% dodecyl maltoside for the root samples). IEF was performed in buffers with the same composition as the extraction buffer except for the root proteins that were better focused in a buffer containing 2% CHAPS.  相似文献   

2.
In order to maximize the myocardial proteome observed by two-dimensional gel electrophoresis (2-DE), the effect of (1) either an ionic or different zwitterionic detergents during tissue homogenization and (2) altering the "standard" detergent for isoelectric focusing (3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS)) to either the zwitterionic detergent amidosulfobetaine-14 (ASB-14) or N-decyl-N-N'-dimethyl-3-ammonio-1-propane sulfonate (SB3-10) was investigated. Sodium dodecyl sulfate was shown to be a superior detergent for extraction of proteins during homogenization of cardiac tissue compared to the detergents ASB-14, SB3-10 or CHAPS. Additionally, both ASB-14 and SB3-10 exhibited better extraction than CHAPS for distinct regions of two-dimensional gels. In most cases, the best combination of homogenization and focusing conditions did not involve the use of the same detergent. Specifically, it was found that the ability to mix homogenization and focusing conditions can allow one to obtain an optimum balance between the resolution and number of protein spots obtained in 2-DE analysis of cardiac tissue. An excellent initial combination of buffers to utilize for the general examination of cardiac proteins was determined to be initial homogenization in a buffer containing ASB-14 followed by focusing in a buffer containing CHAPS.  相似文献   

3.
The major proteins of myelin have classically been extracted in organic solvents. Here we investigated some of the characteristics of brain myelin solubilization in aqueous detergent solutions. At comparable molar concentrations, two nonionic detergents, i.e., octyl glucoside and Lubrol PX, proved relatively better myelin solubilizers than the detergents related to the bile salts, i.e., cholate and CHAPS. The two former detergents solubilized more protein than lipid and the two latter ones more lipid than protein from myelin membranes. All four detergents solubilized the phospholipid more efficiently than the cholesterol component of myelin. The detergent concentrations required for myelin solubilization were reduced substantially if the temperature and the salt concentration of the media were increased. As much as 3 mg of lyophilized myelin (about 1 mg of protein) were solubilized readily per milliliter of a solution containing 30 mM octyl glucoside and 0.1 M sodium sulfate in 0.1 M sodium phosphate buffer, pH 6.7. Each of the detergents studied, including the above four, sodium dodecyl sulfate (SDS). Triton X-100, and Zwittergent 3-14, had its own advantages and drawbacks as myelin protein extractors. The nonionic amphiphiles and CHAPS left a small residue mainly composed of proteins of the Wolfgram fraction, as revealed by SDS-polyacrylamide gel electrophoresis. Octyl glucoside was preferred, given its versatility as solubilizer, ultraviolet transparency, and high critical micellar concentration. Observations on possible difficulties that may be encountered are also included.  相似文献   

4.
Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide‐binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full‐length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification.  相似文献   

5.
The quality and ease of proteomics analysis depends on the performance of the analytical tools used, and thus of the performances of the protein separation tools used to deconvolute complex protein samples. Among protein samples, membrane proteins are one of the most difficult sample classes, because of their hydrophobicity and embedment in the lipid bilayers. This review deals with the recent progresses and advances made in the separation of membrane proteins by 2-DE separating only denatured proteins. Traditional 2-D methods, i.e., methods using IEF in the first dimension are compared to methods using only zone electrophoresis in both dimensions, i.e., electrophoresis in the presence of cationic or anionic detergents. The overall performances and fields of application of both types of method is critically examined, as are future prospects for this field.  相似文献   

6.
Green sulfur bacteria are obligate anaerobic phototrophs, which in addition to outer and plasma membranes contain chlorosomes. The analysis of the membrane proteome of Chlorobium tepidum from chlorosome-depleted membranes is described in this study. The membranes were purified by sucrose density centrifugation and characterized by 1-DE and 2-DE coupled with MS, absorption spectroscopy, and electron microscopy. 1-DE and 2-DE were employed to analyze the membrane proteins and to characterize the capabilities of the methods. Solubilization of the membrane proteins prior to 2-DE was improved by using a series of zwitterionic detergents. Based on the resolved spots after 2-DE, the combination of amidosulfobetaine 14 with Triton X-100 is more efficient than the combination of CHAPS, N-decyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, and Triton X-100. From the application of 1-DE and 2-DE, 167 and 202 unique proteins were identified, respectively, using PMF by MALDI-TOF MS. Both methods resulted in the detection of 291 different proteins of which only 88 were predicted membrane proteins, indicating the limitation of membrane protein detection after separation with electrophoresis methods. In addition, 53 of these proteins were identified as outer membrane proteins.  相似文献   

7.
Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G(-/-) mice, these proteins "piled up" at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.  相似文献   

8.
Glycosphingolipids and cholesterol form lateral assemblies, or lipid 'rafts', within biological membranes. Lipid rafts are routinely studied biochemically as low-density, detergent-insoluble complexes (in non-ionic detergents at 4 degrees C; DIGs, detergent-insoluble glycosphingolipid/cholesterol microdomains). Recent discrepancies recommended a re-evaluation of the conditions used for the biochemical analysis of lipid rafts. We have investigated the detergent insolubility of several known proteins present in the glycosphingolipid/cholesterol-rich myelin membrane, using four detergents representing different chemical classes (TX-100, CHAPS, Brij 96 and TX-102), under four conditions: detergent extraction of myelin either at (i) 4 degrees C or (ii) 37 degrees C, or at 4 degrees C after pre-extraction with (iii) saponin or (iv) methyl-beta-cyclodextrin (MbetaCD). Each detergent was different in its ability to solubilize myelin proteins and in the density of the DIGs produced. Brij 96 DIGs floated to a lower density than other detergents tested, possibly representing a subpopulation of DIGs in myelin. DIGs pre-extracted with saponin were denser than DIGs pre-extracted with MbetaCD. Furthermore, pre-extraction with MbetaCD solubilized proteolipid protein (known to associate with cholesterol), whereas pre-extraction with saponin did not, suggesting that saponin is less effective as a cholesterol-perturbing agent than is MbetaCD. These results demonstrate that DIGs isolated by different detergents are not necessarily comparable, and that these detergent-specific DIGs may represent distinct biochemical, and possibly physiological, entities based on the solubilities of specific lipids/proteins in each type of detergent.  相似文献   

9.
Detergents commonly used for solubilization of membrane proteins may be ionic or non-ionic. Exposing membrane proteins to detergents, however, can adversely affect their native structure, which can be a major hindrance for functional studies. This is especially true for proteins with multiple transmembrane domains. The ProteoExtract Transmembrane Protein Extraction Kit (TM-PEK), offered by Merck, provides a detergent-free novel reagents to enable the mild and efficient extraction of proteins containing seven transmembrane domains, such as GPCRs (G-Protein Coupled Receptors) e.g.: Frizzled-4 and CELSR-3, from mammalian cells. The fraction enriched in transmembrane proteins using TM-PEK is directly compatible with enzyme assays, non-denaturing gel electrophoresis, 1- and 2-D SDS-PAGE, MS analysis, Western blotting, immunoprecipitation and ELISA. Unlike many alternatives, TM-PEK extraction procedure does not require sonication, extended rigorous vortexing, ultracentrifugation, or incubation of samples at elevated temperatures--thus minimizing the risk of post-extraction degradation or modifications.  相似文献   

10.
We describe the synthesis of two detergents, L and A15, whose performances as solubilizing agents and as additives in the first-dimension step of a two-dimensional separation are compared with those of some commercial compounds, i.e., Nonidet P-40, 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate(Chaps), and sulfobetaine, on three membrane protein preparations: rat RBC ghosts, beef kidney microvilli, and spinach thylakoids. L is 3-]3-dodecylamidoprophylcbdimethylammonio propane-1-sulfonate; owing to the substitution of a dodecylamido for the dodecyl residue of SB 3-12, the concentration of urea compatible with 2% detergent increases from 4.5 M for the parent molecule up to 7 M. With all three biological samples on which the panel of different detergents has been tested in parallel, L + urea scores as the most effective solubilization medium. On red blood cells a notable qualitative difference is observed with the selective extraction by L as well as by N-dodecyl-N,N-dimethylammonio-3-propanesulfonate of a major protein (pI = ca. 5.5, Mr = ca. 100,000). A15 is derived from a tertiary amine, with one alkylic substituent (either C11 or C13) and two poly(ethylene oxide) tails (totaling 15 ethoxy residues), which is reacted with propane sultone. Approximately 30% of the product corresponds to the N-adduct and is a truly zwitterionic detergent, while 60% is an O-derivative and still contains a titratable amino group (with a pK of 7.2). A15 can thus be used for isoelectric focusing on immobilized pH gradients, as in this work, but would not be compatible with carrier ampholyte isoelectric focusing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Improperly folded metal cofactor-containing proteins (e.g., copper chaperone for superoxide dismutase, CCS) are believed to play a key role in several protein-misfolding diseases (e.g., Alzheimer's disease or Amyotrophic Lateral Sclerosis) because under regular physiological conditions, metallochaperones activate or stabilize the native conformation of important metalloproteins (e.g., superoxide dismutase) in certain cellular processes. For an improved diagnosis and therapy of neurodegenerative diseases, new methodologies have to be developed that enable a well-defined differentiation between properly folded and inactive metalloproteins in clinical samples. In the literature it is reported that different high molecular mass metal-containing proteins were isolated in brain samples from Alzheimer's patients and in vegetables by using a 2-dimensional polyacrylamide gel electrophoresis (2-DE) procedure. In the present article, selected results of these studies are scrutinized and compared with some results obtained by a standardized method termed 'quantitative preparative native continuous polyacrylamide gel electrophoresis (QPNC-PAGE)'. Conclusively, QPNC-PAGE is a highly efficient approach used by biochemists to resolve native and denatured metalloproteins (MW 6 - > or = 200 kDa) in complex protein mixtures.  相似文献   

12.
Zwitterionic detergents interfere with the salt-induced phase separation for nonionic detergents in a concentration-dependent manner by shifting the normal cloud point of nonionic detergents to a higher ionic strength at room temperature. This phenomenon was used to determine the concentration of the zwitterionic detergents CHAPS, CHAPSO, and sulfobetaine SB-12 in solution by titration with ammonium sulfate in the presence of Triton X-100. Among the ionic detergents tested, the method was only applicable to sodium cholate. The assay can be used to control the removal of zwitterionic detergents during the reconstitution of membrane proteins in liposomes. However, it cannot be used to determine the specific binding of zwitterionic detergents to highly diluted, pure membrane proteins because of the limited sensitivity. Neither proteins nor phospholipids interfered with this method at concentrations up to 20 mg/ml of test solution (human serum albumin) or 10 mg/ml (phospholipids), respectively. Since the assay is based on the competition between salts and nonionic detergents for water molecules, it is important to equalize the ionic strength of samples and calibration standards.  相似文献   

13.
Functional proteomics of membrane proteins is an important tool for the understanding of protein networks in biological membranes but structural studies on this part of the proteome are limited. In this study we undertook such an approach to analyse photosynthetic thylakoid membranes isolated from wild-type and mutant strains of Chlamydomonas reinhardtii. Thylakoid membrane proteins were separated by high-resolution two-dimensional gel electrophoresis (2-DE) and analysed by immuno-blotting and mass spectrometry for the presence of membrane-spanning proteins. Our data show that light-harvesting complex proteins (LHCP), that cross the membrane with three transmembrane domains, can be separated using this method. We have identified more than 30 different LHCP spots on our gels. Mass spectrometric analysis of 2-DE separated Lhcb1 indicates that this major LHCII protein can associate with the thylakoid membrane with part of its putative transit sequence. Separation of isolated photosystem I (PSI) complexes by 2-DE revealed the presence of 18 LHCI protein spots. The use of two peptide-specific antibodies directed against LHCI subunits supports the interpretation that some of these spots represent products arising from differential processing and post-translational modifications. In addition our data indicate that the reaction centre subunit of PSI, PsaA, that possesses 11 transmembrane domains, can be separated by 2-DE. Comparison between 2-DE maps from thylakoid membrane proteins isolated from a PSI-deficient (Deltaycf4) and a crd1 mutant, which is conditionally reduced in PSI and LHCI under copper-deficiency, showed the presence of most of the LHCI spots in the former but their absence in the latter. Our data demonstrate that (i) hydrophobic membrane proteins like the LHCPs can be faithfully separated by 2-DE, and (ii) that high-resolution 2-DE facilitates the comparative analysis of membrane protein complexes in wild-type and mutants cells.  相似文献   

14.
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.  相似文献   

15.
A method is presented for the separation and detection of the myelin marker enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase on isoelectric focusing gels and by immunoblotting. The gel staining procedure is a modification of a method used to demonstrate enzyme activity on blots after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis. The results show that immunologically active 2',3'-cyclic nucleotide 3'-phosphodiesterase can be separated under equilibrium conditions on isoelectric focusing gels with an expanded alkaline pH range after solubilization in a mixture of nonionic/zwitterionic detergents and urea. Enzymatically active 2',3'-cyclic nucleotide 3'-phosphodiesterase focused as two closely spaced bands at pIapp 8.1 and 8.8, respectively, while 2',3'-cyclic nucleotide 3'-phosphodiesterase immunoreactivity was detected as four distinct bands at pIapp 4.2, 7.4, 8.8, and 9.3 and a diffuse band at pIapp 7.9-8.2. By two-dimensional separation these five bands showed molecular weights of about 43-47 kDa, i.e., corresponding to reported values for immunologically active 2',3'-cyclic nucleotide 3'-phosphodiesterase. Since enzyme activity is associated with only two of the bands, nonspecific and artifactual banding due to, e.g., detergent micelle formation, is unlikely.  相似文献   

16.
We have established the generality of using detergents for facilitating the reactivation of 6 M guanidinium chloride-denatured rhodanese that was recently described for the nonionic detergent lauryl maltoside (LM) (Tandon, S., and Horowitz, P. (1986) J. Biol. Chem. 261, 15615-15618). We report here that not only LM but other nonionic as well as ionic and zwitterionic detergents also have favorable effects in reactivating the denatured enzyme. Not all detergents are useful, and the favorable effects occur over a limited concentration range. Above and below that range there is little or no effect. Zwittergents, which represent a homologous series with varying critical micelle concentrations (CMCs) are effective only above their CMCs. Induction phases occur in the progress curves of rhodanese refolded in the presence of the effective detergents, suggesting the presence of refolding intermediates that are apparently stabilized by detergent interactions. Gel filtration chromatography of rhodanese with and without LM suggests that even though the renaturation of the denatured enzyme requires detergent at concentrations above its CMC, the enzyme does not bind an amount of detergent equivalent to a micelle. It is suggested that renaturation of other proteins might also be assisted by inclusion of "nondenaturing" detergents, although the optimal conditions will have to be determined for each individual case.  相似文献   

17.
To examine the activities and identity of enzymes associated with organelles such as microsomes and mitochondria, proteins from mouse liver were extracted using the non-ionic detergents Nonidet P-40 (NP-40), polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene isooctylphenyl ester (Triton X), n-octyl beta-D-glucoside (octyl glycoside) or anionic detergent sodium dodecylsulfate (SDS) after the removal of cytosolic proteins. The proteins extracted by detergents were separated by non-denaturing two-dimensional electrophoresis (2-DE). The activities of esterase and aldehyde dehydrogenase were retained by non-denaturing 2-DE after treatment with each non-ionic detergent, but the activities were reduced or lost when the proteins were extracted with more than 0.5% SDS. For proteomic analysis of the organelle-associated proteins in mouse liver, proteins were separated by non-denaturing 2-DE and were identified using electrospray ionization tandem mass spectrometry (ESI-MS/MS) after the proteins were solubilized by octyl glycoside, NP-40 and 0.1% SDS. Several organelle-associated proteins such as carboxylesterase, aldehyde dehydrogenase, glucose regulated protein and HSP60 were identified. These results indicate that the activities and identity of detergent-soluble enzymes can be examined by this non-denaturing 2-DE and mass spectrometry.  相似文献   

18.
Elastin‐like polypeptide (ELP) fusions have been designed to allow large‐scale, nonchromatographic purification of many soluble proteins by using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., n‐dodecyl‐β‐D ‐maltoside, Triton‐X100, and 3‐[(3‐cholamidopropyl) dimethylamino]‐1‐propanesulfonate) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., sodium dodecylsulfate) on the Tt of ELPs. Our results clearly indicate that mild detergents do not preclude ITC‐based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent‐solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Wang YY  Cheung PY  Wong MS  Lo SC 《Proteomics》2003,3(5):580-583
Two-dimensional electrophoresis (2-DE) is one of the most commonly used techniques in proteomic investigations. However, due to the complex interplay of incidence including significant biological sample variations, lengthy steps involved in performing 2-DE as well as exposure time with silver staining, it is sometimes difficult to differentiate authentic differences caused by drug treatment with those artifacts caused by sample variations, running conditions of 2-DE as well as treatment time in silver staining etc. If we can compare pooled samples of control and treatment groups run in a single gel and stained together, we would be more comfortable with our findings. We propose here a low cost and highly effective method for locating differentially expressed proteins before and after drug treatment. This "two-in-one gel" technique might partially solve the problems mentioned above.  相似文献   

20.
Induction of conductance heterogeneity in gramicidin channels   总被引:8,自引:0,他引:8  
In previous work from our laboratory, 5-10% of the channels formed by [Val1]gramicidin A have conductances that fall outside the narrow range that conventionally has defined the standard gramicidin channel [e.g., see Russell et al. (1986) Biophys. J. 49, 673]. Reports from other laboratories, however, show that up to 50% of [Val1]gramicidin channels have conductances that fall outside the range for standard channels [e.g., see Prasad et al. (1986) Biochemistry 25, 456]. This laboratory-to-laboratory variation in the distribution of gramicidin single-channel conductances suggests that the conductance variants are induced by some environmental factor(s) [Busath et al. (1987) Biophys. J. 51, 79]. In order to test whether extrinsic agents can induce such conductance heterogeneity, we examined the effects of nonionic or zwitterionic detergents upon gramicidin channel behavior. In phospholipid bilayers, detergent addition induces many changes in gramicidin channel behavior: all detergents tested increase the channel appearance rate and average duration; most detergents decrease the conductance of the standard channel; and all but one of the detergents increase the conductance heterogeneity. These results show that the conductance heterogeneity can result from environmental perturbations, thus providing a possible explanation for the laboratory-to-laboratory variation in the heterogeneity of gramicidin channels. In addition, the differential detergent effects suggest possible mechanisms by which detergents can induce the conformational perturbations that result in gramicidin single-channel conductance variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号