首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several forms of diacetyl-reducing enzyme were found to exist in the human liver cytosol. Three (DAR-2, DAR-5, and DAR-7) of them were purified as a single band on SDS-PAGE by a combination of a few kinds of column chromatographies. The in-gel tryptic digests of the purified enzymes were analyzed by nano-liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), which provided peptide masses at a ppm-level accuracy. The enzymes, DAR-2, DAR-5, and DAR-7, were identified as alcohol dehydrogenase beta subunit (ADH2), carbonyl reductase (CBR1), and aldehyde reductase (AKR1A1), respectively, by peptide mass fingerprinting. In addition, an alternating-scan acquisition of nano-LC/FT ICR mass spectra, i.e., switching of normal acquisition conditions and in-source fragmentation conditions scan by scan, provided sets of parent and fragment ion masses of many of the tryptic peptides in a single LC/MS run. The peptide sequence-tag information at the ppm-level accuracy was used to further confirm the protein identities. It was demonstrated that nano-LC/FT ICR MS can be used for rigorous protein identification at a subpicomole level as an alternative technique to nano-LC/MS/MS.  相似文献   

2.
High mass measurement accuracy is critical for confident protein identification and characterization in proteomics research. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is a unique technique which can provide unparalleled mass accuracy and resolving power. However, the mass measurement accuracy of FTICR-MS can be affected by space charge effects. Here, we present a novel internal calibrant-free calibration method that corrects for space charge-induced frequency shifts in FTICR fragment spectra called Calibration Optimization on Fragment Ions (COFI). This new strategy utilizes the information from fixed mass differences between two neighboring peptide fragment ions (such as y(1) and y(2)) to correct the frequency shift after data collection. COFI has been successfully applied to LC-FTICR fragmentation data. Mascot MS/MS ion search data demonstrate that most of the fragments from BSA tryptic digested peptides can be identified using a much lower mass tolerance window after applying COFI to LC-FTICR-MS/MS of BSA tryptic digest. Furthermore, COFI has been used for multiplexed LC-CID-FTICR-MS which is an attractive technique because of its increased duty cycle and dynamic range. After the application of COFI to a multiplexed LC-CID-FTICR-MS of BSA tryptic digest, we achieved an average measured mass accuracy of 2.49 ppm for all the identified BSA fragments.  相似文献   

3.
Methods for treating MS/MS data to achieve accurate peptide identification are currently the subject of much research activity. In this study we describe a new method for filtering MS/MS data and refining precursor masses that provides highly accurate analyses of massive sets of proteomics data. This method, coined "postexperiment monoisotopic mass filtering and refinement" (PE-MMR), consists of several data processing steps: 1) generation of lists of all monoisotopic masses observed in a whole LC/MS experiment, 2) clusterization of monoisotopic masses of a peptide into unique mass classes (UMCs) based on their masses and LC elution times, 3) matching the precursor masses of the MS/MS data to a representative mass of a UMC, and 4) filtration of the MS/MS data based on the presence of corresponding monoisotopic masses and refinement of the precursor ion masses by the UMC mass. PE-MMR increases the throughput of proteomics data analysis, by efficiently removing "garbage" MS/MS data prior to database searching, and improves the mass measurement accuracies (i.e. 0.05 +/- 1.49 ppm for yeast data (from 4.46 +/- 2.81 ppm) and 0.03 +/- 3.41 ppm for glycopeptide data (from 4.8 +/- 7.4 ppm)) for an increased number of identified peptides. In proteomics analyses of glycopeptide-enriched samples, PE-MMR processing greatly reduces the degree of false glycopeptide identification by correctly assigning the monoisotopic masses for the precursor ions prior to database searching. By applying this technique to analyses of proteome samples of varying complexities, we demonstrate herein that PE-MMR is an effective and accurate method for treating massive sets of proteomics data.  相似文献   

4.
Mass spectrometric techniques for identification of proteins by "mass fingerprinting" (matching the masses of tryptic peptides from a protein digest to the theoretical peptides in a database) such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) are rapidly growing in popularity as the demand for high throughput analysis of the proteome increases. This is due, in part, to the ability to automate the technique and the rapid rate with which mass spectra may be acquired. An important factor in the accuracy of the technique is the number of tryptic peptides that are identified in the various searching algorithms that exist. The greater sequence coverage of the parent protein that is obtained, the higher the level of confidence in the identification that is determined. One impediment to high levels of sequence coverage is the bias of MALDI-TOF mass spectrometry to arginine-containing peptides. Increasing the sensitivity to lysine-containing peptides should increase the sequence coverage obtained. In order to achieve this result we have developed conditions to modify the epsilon-amine group of lysine in tryptic peptides with O-methylisourea. The conditions utilized result in the conversion of lysine to homoarginine with no modification of the amine terminus of the peptides. The sensitivity of MALDI-TOF mass spectrometry detection of peptides was increased dramatically following modification. The modification chemistry may be applied to tryptic peptide mixtures prior to desalting and spotting onto MALDI-TOF plates. This technique will be particularly useful for identifying proteins with a high lysine/arginine ratio.  相似文献   

5.
A database of high-mass accuracy tryptic peptides has been created. The database contains 15 897 unique, annotated MS/MS spectra. It is possible to search for peptides according to their mass, number of missed cleavages, and sequence motifs. All of the data contained in the database is downloadable, and each spectrum can be visualized. An example is presented of how the database can be used for studying peptide fragmentation. Fragmentation of different types of missed cleaved peptides has been studied, and the results can be used to improve identification of these types of peptides.  相似文献   

6.
Cell culture is a fundamental tool in proteomics where mammalian cells are cultured in vitro using a growth medium often supplemented with 5–15% FBS. Contamination by bovine proteins is difficult to avoid because of adherence to the plastic vessel and the cultured cells. We have generated peptides from bovine serum using four sample preparation methods and analyzed the peptides by high mass accuracy LC‐MS/MS. Distinguishing between bovine and human peptides is difficult because of a considerable overlap of identical tryptic peptide sequences. Pitfalls in interpretation, different database search strategies to minimize erroneous identifications and an augmented contaminant database are presented.  相似文献   

7.
Protein identification by interrogation of databases requires a comprehensive compilation of modified amino acids forms. Here, we describe the chemical oxidation of carboxyamidomethyl cysteine to the sulfoxide and sulfone forms, species that may add more complexity to peptide analyses. They can be easily distinguished by tandem mass spectrometry (MS/MS) due to their characteristic pattern of side chain neutral eliminations either from the parent ion or ion series that generate dehydroalanine as detected by MS(3). This finding was supported by the MS(n) spectra recorded for a peptide isolated from a mixture of tryptic peptides and for a derivatized/oxidized synthetic peptide with a different sequence. These modifications and their diagnostic neutral losses should be included in the list of chemical modifications and in algorithms designed for the automatic sequencing of peptides and database searching.  相似文献   

8.
A proteome of a model organism, Caenorhabditis elegans, was analyzed by an integrated liquid chromatography (LC)-based protein identification system, which was constructed by microscale two-dimensional liquid chromatography (2DLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. Soluble and insoluble protein fractions were prepared from a mixed growth phase culture of the worm C. elegans, digested with trypsin, and fractionated separately on the 2DLC system. The separated peptides were directly analyzed by on-line ESI-MS/MS in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database, wormpep 66, for protein identification. The total number of proteins of the composite proteome identified in this method was 1,616, including 110 secreted/targeted proteins and 242 transmembrane proteins. The codon adaptation indices of the identified proteins suggested that the system could identify proteins of relatively low abundance, which are difficult to identify by conventional 2D-gel electrophoresis (GE) followed by an offline mass spectrometric analysis such as peptide mass fingerprinting. Among the approximately 5,400 peptides assigned in this study, many peptides with post-translational modifications, such as N-terminal acetylation and phosphorylation, were detected. This expression profile of C. elegans, containing 571 hypothetical gene products, will serve as the basic data of a major proteome set expressed in the worm.  相似文献   

9.
We report on the simple application of a new nanostructured silicon (NanoSi) substrate as laser desorption/ionization (LDI)-promoting surface for high-throughput identification of protein tryptic digests by a rapid MS profiling and subsequent MS/MS analysis. The NanoSi substrate is easily prepared by chemical etching of crystalline silicon in NH(4)F/HNO(3)/AgNO(3) aqueous solution. To assess the LDI performances in terms of sensitivity, repeatability and robustness, the detection of small synthetic peptides (380-1700Da) was investigated. Moreover, peptide sequencing was tackled. Various tryptic synthetic peptide mixtures were first characterized in MS and MS/MS experiments carried out on a single deposit. Having illustrated the capability to achieve peptide detection and sequencing on these ionizing surfaces in the same run, protein tryptic digests from Cytochrome C, β-Casein, BSA and Fibrinogen were then analyzed in the femtomolar range (from 50 fmol for Cytochrome C down to 2 fmol for Fibrinogen). Comparison of the NanoSi MS and MS/MS data with those obtained with sample conditioned in organic matrix demonstrated a great behavior for low mass responses. We demonstrated the capability of LDI on NanoSi to be a complementary method to MALDI peptide mass fingerprinting ensuring determination of peptide molecular weights and sequences for more efficient protein database searches.  相似文献   

10.
Chromatographed peptide signals form the basis of further data processing that eventually results in functional information derived from data‐dependent bottom‐up proteomics assays. We seek to rank LC/MS parent ions by the quality of their extracted ion chromatograms. Ranked extracted ion chromatograms act as an intuitive physical/chemical preselection filter to improve the quality of MS/MS fragment scans submitted for database search. We identify more than 4900 proteins when considering detector shifts of less than 7 ppm. High quality parent ions for which the database search yields no hits become candidates for subsequent unrestricted analysis for PTMs. Following this rational approach, we prioritize identification of more than 5000 spectrum matches from modified peptides and confirmed the presence of acetylaldehyde‐modified His/Lys. We present a logical workflow that scores data‐dependent selected ion chromatograms and leverage information about semianalytical LC/LC dimension prior to MS. Our method can be successfully used to identify unexpected modifications in peptides with excellent chromatography characteristics, independent of fragmentation pattern and activation methods. We illustrate analysis of ion chromatograms detected in two different modes by RF linear ion trap and electrostatic field orbitrap.  相似文献   

11.
Two-dimensional liquid chromatography (2D-LC) coupled on-line with electrospray ionization tandem mass spectrometry (2D-LC-ESI-MS/MS) is a new platform for analysis and identification of proteome. Peptides are separated by 2D-LC and then performed MS/MS analysis by tandem MS/MS. The MS/MS data are searched against database for protein identification. In one 2D-LC-ESI-MS/MS run, we obtained not only the structural information of peptides directly from MS/MS, but also the retention time of peptides eluted from LC. Information on the chromatographic behavior of peptides can assist protein identification in the new platform for proteomics. The retention time of the matching peptides of the identified protein was predicted by the hydrophobic contribute of each amino acid on reversed-phase liquid chromatography (RPLC). By using this strategy proteins were identified by four types of information: peptide mass fingerprinting (PMF), sequence query, and MS/MS ions searched and the predicted retention time. This additional information obtained from LC could assist protein identification with no extra experimental cost.  相似文献   

12.

Background

It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC–ESI–MS/MS to identify, with a linear quadrupole ion trap to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations.

Methods

A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC–ESI–MS/MS experiments analyzed in SQL Server R.

Results

Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 μL of plasma with nano electrospray resulted in the confident identification and quantification ~?14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥?E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~?26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~?0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey–Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes.

Conclusions

The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC–ESI–MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.
  相似文献   

13.
Liu F  Wu C  Sweedler JV  Goshe MB 《Proteomics》2012,12(3):401-405
We describe a novel two-step LC/MS(n) strategy to effectively and confidently identify numerous crosslinked peptides from complex mixtures. This method incorporates the use of our gas-phase cleavable crosslinking reagent, disuccinimidyl-succinamyl-aspartyl-proline (SuDP), and a new data-processing algorithm CXLinkS (Cleavable Crosslink Selection), which enables unequivocal crosslink peptide selection and identification on the basis of mass measurement accuracy, high resolving power, and the unique fragmentation pattern of each crosslinked peptide. We demonstrate our approach with well-characterized monomeric and multimeric protein systems with and without database searching restrictions where inter-peptide crosslink identification is increased 8-fold over our previously published data-dependent LC/MS3 method and discuss its applicability to other CID-cleavable crosslinkers and more complex protein systems.  相似文献   

14.
In this study we systematically analyzed the elution condition of tryptic peptides and the characteristics of identified peptides in reverse phase liquid chromatography and electrospray tandem mass spectrometry (RPLC-MS/MS) analysis. Following protein digestion with trypsin, the peptide mixture was analyzed by on-line RPLC-MS/MS. Bovine serum albumin (BSA) was used to optimize acetonitrile (ACN) elution gradient for tryptic peptides, and Cytochrome C was used to retest the gradient and the sensitivity of LC-MS/MS. The characteristics of identified peptides were also analyzed. In our experiments, the suitable ACN gradient is 5% to 30% for tryptic peptide elution and the sensitivity of LC-MS/MS is 50 fmol.Analysis of the tryptic peptides demonstrated that longer (more than 10 amino acids) and multi-charge state ( 2, 3) peptides are likely to be identified, and the hydropathicity of the peptides might not be related to whether it is more likely to be identified or not. The number of identified peptides for a protein might be used to estimate its loading amount under the same sample background. Moreover, in this study the identified peptides present three types of redundancy, namely identification, charge, and sequence redundancy, which may repress low abundance protein identification.  相似文献   

15.
MS/MS and database searching has emerged as a valuable technology for rapidly analyzing protein expression, localization, and post-translational modifications. The probability-based search engine Mascot has found widespread use as a tool to correlate tandem mass spectra with peptides in a sequence database. Although the Mascot scoring algorithm provides a probability-based model for peptide identification, the independent peptide scores do not correlate with the significance of the proteins to which they match. Herein, we describe a heuristic method for organizing proteins identified at a specified false-discovery rate using Mascot-matched peptides. We call this method PROVALT, and it uses peptide matches from a random database to calculate false-discovery rates for protein identifications and reduces a complex list of peptide matches to a nonredundant list of homologous protein groups. This method was evaluated using Mascot-identified peptides from a Trypanosoma cruzi epimastigote whole-cell lysate, which was separated by multidimensional LC and analyzed by MS/MS. PROVALT was then compared with the two traditional methods of protein identification when using Mascot, the single peptide score and cumulative protein score methods, and was shown to be superior to both in regards to the number of proteins identified and the inclusion of lower scoring nonrandom peptide matches.  相似文献   

16.
We have developed a real-time graphic-processor-unit-based search engine capable of high-quality peptide identifications in <500 μs per spectrum. The steps of peptide/protein identification, in-silico prediction of all possible tryptic peptides from these proteins, and the prediction of their expected retention times and m/z values take less than 5 s per cycle over ~3000 MS/MS spectra. This lays the foundation for information-dependent acquisition with exclusion lists generated on-the-fly, as the instrument continues to acquire data. While a complete evaluation of the dynamic exclusion system requires the participation from instrument vendors, we conducted a series of model experiments using a whole cell tryptic digestion of the bacterium Clostridium thermocellum. We ran a series of five iterative LC-MS/MS runs, adding a new exclusion list at each of four chromatographic "tripping points" - the elution times of the four standard peptides spiked into the sample. Retention times of these standard peptides were also used for real-time "chromatographic calibration." The dynamic exclusion approach gave a ≈ 5% increase in confident protein identification (for typical 2 h LC-MS/MS run), and reduced the average number of identified peptides per protein from 4.7 to 2.9. Its application to a two-times shorter gradient gave a ≈ 17% increase in proteins identified. Further improvements are possible for instruments with better mass accuracy, by employing a more accurate retention prediction algorithm and by developing better understanding of the possible chemical modifications and fragmentations produced during electrospray ionization.  相似文献   

17.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

18.
Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons.  相似文献   

19.
Biniossek ML  Schilling O 《Proteomics》2012,12(9):1303-1309
Peptide sequences lacking basic residues (arginine, lysine, or histidine, referred to as "base-less") are of particular importance in proteomic experiments targeting protein C-termini or employing nontryptic proteases such as GluC or chymotrypsin. We demonstrate enhanced identification of base-less peptides by focused analysis of singly charged precursors in liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Singly charged precursors are often excluded from fragmentation and sequence analysis in LC-MS/MS. We generated different pools of base-less and base-containing peptides by tryptic and nontryptic digestion of bacterial proteomes. Focused LC-MS/MS analysis of singly charged precursor ions yielded predominantly base-less peptide identifications. Similar numbers of base-less peptides were identified by LC-MS/M Sanalysis targeting multiply charged precursors. There was little redundancy between the base-less sequences derived by both MS/MS schemes. In the present experimental outcome, additional LC-MS/MS analysis of singly charged precursors substantially increased the identification rate of base-less sequences derived from multiply charged precursors. In conclusion, LC-MS/MS based identification of base-less peptides is substantially enhanced by additional focused analysis of singly charged precursors.  相似文献   

20.
This study describes the application of a single tube sample preparation technique coupled with multidimensional fractionation for the analysis of a complex membrane protein sample from murine natural killer (NK) cells. A solution-based method that facilitates the solubilization and tryptic digestion of integral membrane proteins is conjoined with strong cation exchange (SCX) liquid chromatography (LC) fractionation followed by microcapillary reversed-phase (microRP) LC tandem mass spectrometric analysis of each SCXLC fraction in second dimension. Sonication in buffered methanol solution was employed to solubilize, and tryptically digest murine NK cell microsomal proteins, allowing for the large-scale identification of integral membrane proteins, including the mapping of the membrane-spanning peptides. Bioinformatic analysis of the acquired tandem mass spectra versus the murine genome database resulted in 11,967 matching tryptic peptide sequences, corresponding to 5782 unique peptide identifications. These peptides resulted in identification of 2563 proteins of which 876 (34%) are classified as membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号