首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hamster viscerotropic strain of yellow fever (YF) virus has been derived after serial passage of strain Asibi through hamsters. The parental Asibi/hamster p0 virus causes a mild and transient viremia in hamsters with no outward, clinical signs of illness. In contrast, the viscerotropic Asibi/hamster p7 virus causes a robust viremia, severe illness, and death in subadult hamsters. The genome of the hamster viscerotropic Asibi/hamster p7 virus has been sequenced and compared with the parental nonviscerotropic Asibi/hamster p0 virus identifying 14 nucleotide changes encoding only seven amino acid substitutions. The majority of these substitutions (five of seven) fall within the envelope (E) protein at positions Q27H, D28G, D155A, K323R, and K331R. These results support an important role for the E protein in determining YF virus viscerotropism.  相似文献   

2.
3.
The Oswaldo Cruz Foundation produces most of the yellow fever (YF) vaccine prepared worldwide. As part of a broader approach to determine the genetic variability in YF 17D seeds and vaccines and its relevance to viral attenuation the 17DD virus was purified directly from chick embryo homogenates which is the source of virus used for vaccination of millions of people in Brazil and other countries for half a century. Neutralization and hemagglutination tests showed that the purified virus is similar to the original stock. Furthermore, radioimmune precipitation of 35S-methionine-labeled viral proteins using mouse hyperimmune ascitic fluid revealed identical patterns for the purified 17DD virus and the YF 17D-204 strain except for the 17DD E protein which migrated slower on SDS-PAGE. This difference is likely to be due to N-linked glycosylation. Finally, comparison by northern blot hybridization of virion RNAs of purified 17DD with two other strains of YF 17D virus revealed only genome-sized molecules for all three viruses. These observations suggest that the vaccine phenotype is primarily associated with the accumulation of mutations.  相似文献   

4.
5.
番茄黄化曲叶病毒的快速分子检测   总被引:5,自引:0,他引:5  
Li CB  Cui YL  Zhang LY  Li CY 《遗传》2012,34(3):366-370
番茄黄化曲叶病毒是当前世界范围内危害番茄生产的毁灭性病害。文章针对番茄黄化曲叶病毒全基因组序列的特异区段自主设计了1对特异性PCR引物(上游引物TYLCV-F:5′-ACGCATGCCTCTAATCCAGTGTA-3′,下游引物TYLCV-R:5′-CCAATAAGGCGTAAGCGTGTAGAC-3′),依据PCR扩增特异片段543 bp的有无可以快速、准确、高效、特异地检测出是否感染了TYLCV病毒,这项技术可以方便地应用到工厂化育苗的带毒性检测、蔬菜大规模生产中植株发病情况的快速检测以及抗病毒育种,从而为蔬菜安全可持续生产提供科技支撑。  相似文献   

6.
李常保  崔彦玲  张丽英  李传友 《遗传》2012,34(3):366-370
番茄黄化曲叶病毒是当前世界范围内危害番茄生产的毁灭性病害。文章针对番茄黄化曲叶病毒全基因组序列的特异区段自主设计了1对特异性PCR引物(上游引物TYLCV-F:5′-ACGCATGCCTCTAATCCAGTGTA-3′, 下游引物TYLCV-R:5′-CCAATAAGGCGTAAGCGTGTAGAC-3′), 依据PCR扩增特异片段543 bp的有无可以快速、准确、高效、特异地检测出是否感染了TYLCV病毒, 这项技术可以方便地应用到工厂化育苗的带毒性检测、蔬菜大规模生产中植株发病情况的快速检测以及抗病毒育种, 从而为蔬菜安全可持续生产提供科技支撑。  相似文献   

7.
Mota J  Rico-Hesse R 《PloS one》2011,6(6):e20762
Animal models of dengue virus disease have been very difficult to develop because of the virus' specificity for infection and replication in certain human cells. We developed a model of dengue fever in immunodeficient mice transplanted with human stem cells from umbilical cord blood. These mice show measurable signs of dengue disease as in humans (fever, viremia, erythema and thrombocytopenia), and after infection with the most virulent strain of dengue serotype 2, humanized mice showed infection in human cells in bone marrow, spleen and blood. Cytokines and chemokines were secreted by these human cells into the mouse bloodstream. We demonstrated that the pathology of dengue virus infection in these mice follows that reported in human patients, making this the first valid and relevant model for studying dengue fever pathogenesis in humans.  相似文献   

8.
Inactivation of yellow fever virus by glutaraldehyde.   总被引:5,自引:4,他引:1       下载免费PDF全文
  相似文献   

9.
10.
Immunization of monkeys with yellow fever virus-specified nonstructural protein NS1 resulted in protection against fatal hepatitis as well as marked reduction in the magnitude of viremia after subcutaneous challenge with yellow fever virus. The results may be relevant to the design of possible subunit or recombinant flavivirus vaccines.  相似文献   

11.
The author is studying the ultrastructural modifications provoked by the yellow fever virus in the kidneys of baby mice. As a result of the study it has been found that minor changes start appearing as early as the first day and these lead finally to necrosis. The process consists of 5 phases which are the development of endoplasmatic reticulum, the envelopment of the mitochondria by the folds of endoplasmatic reticulum, mitochondrial autophagocytosis, the development of microvilli at the cell surface and the total necrosis of the renal cell.  相似文献   

12.
侯爵  刘颖  邵一鸣 《病毒学报》2011,27(4):388-394
黄热病毒(Yellowfever virus,YFV)是属于黄病毒科(Flavivirdae)黄病毒属(Flavivirus)的典型代表,为RNA病毒其不仅是第一个被发现的导致人类疾病的"滤过性颗粒",也是第一个被证实通过蚊蜱传播的病毒。黄热病是一种区域性疾病,在南美  相似文献   

13.
The major immunogenic proteins (Ems,E2 and NS3) of classical swine fever virus (CSFV) (Shimen strain) were expressed in E.coli and purified by affinity chromatography.The recombinant antigens were appl...  相似文献   

14.
Functional requirements of the yellow fever virus capsid protein   总被引:2,自引:2,他引:0       下载免费PDF全文
Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.  相似文献   

15.
16.
A molecular clone of mouse-neuroadapted yellow fever 17D virus (SPYF-MN) was used to identify critical determinants of viral neuroinvasiveness in a SCID mouse model. Virus derived from this clone differs from nonneuroinvasive YF5.2iv virus at 29 nucleotide positions, encoding 13 predicted amino acid substitutions and 2 substitutions in the 3' untranslated region (UTR). The virulence determinants of SPYF-MN for SCID mice were identified by constructing and characterizing intratypic viruses in which the E protein of SPYF-MN was expressed in the YF5.2iv background (SPYF-E) or the E protein of YF5.2iv was expressed in the SPYF-MN background (YF5.2-E). SPYF-E caused lethal encephalitis in young adult SCID mice after intraperitoneal inoculation, with average survival times and tissue virus burdens resembling those of mice inoculated with the parental SPYF-MN virus. To define which domains of the E protein are involved in neuroinvasiveness, two viruses were tested in which the amino acid substitutions in domains I-II and III were segregated. This revealed that substitutions in domain III (residues 305, 326, and 380) were critical for the neuroinvasive phenotype, based on average survival times and tissue burdens of infectious virus. Comparison of growth properties of the various intratypic viruses in cell culture indicated that no inherent defects in replication efficiency were likely to account for the biological differences observed in these experiments. These findings demonstrate that the E protein is a critical factor for yellow fever virus neuropathogenesis in the SCID mouse model and that the neuroinvasive properties depend principally on functions contributed by domain III of this protein. To assess whether critical determinants for neuroinvasion of normal ICR mice by SPYF virus were also in the E protein, sequences of viruses recovered from brains of ICR mice succumbing to encephalitis with the parental SPYF virus were derived. No differences were found in the E protein; however, two substitutions were present in the 3' UTR compared to that of SPYF-MN, one of which is predicted to alter RNA secondary structure in this region. These findings suggest that the 3' UTR may also affect neuroinvasiveness of SPYF virus in the mouse model.  相似文献   

17.
A chimeric flavivirus infectious cDNA was constructed by exchanging the premembrane (prM) and envelope (E) genes of the yellow fever virus vaccine strain 17D (YF17D) with the corresponding genes of Modoc virus (MOD). This latter virus belongs to the cluster of the "not-known vector" flaviviruses and is, unlike YF17D, neuroinvasive in SCID mice. Replication of in vitro-transcribed RNA from this chimeric flavivirus was shown by [(3)H]uridine labeling and RNA analysis. Expression of the MOD prM and E proteins was monitored by radioimmunoprecipitation and revealed that the MOD proteins were correctly and efficiently produced from the chimeric precursor protein. The MOD E protein was shown to be N-linked glycosylated, whereas prM, as predicted from the genome sequence, did not contain N-linked carbohydrates. In Vero cells, the chimeric virus replicated with a similar efficiency as the parental viruses, although it formed smaller plaques than YF17D and MOD. In SCID mice that had been infected intraperitoneally with the chimeric virus, the viral load increased steadily until death. The MOD/YF virus, like MOD from which it had acquired the prM and E structural proteins, but unlike YF, proved neuroinvasive in SCID mice. Animals developed neurological symptoms about 15 days after inoculation and died shortly thereafter. The distribution of MOD/YF RNA in the brain of infected mice was similar to that observed in MOD-infected mice. The observations provide compelling evidence that the determinants of neuroinvasiveness of flaviviruses are entirely located in the envelope proteins prM and E.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号