首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability.  相似文献   

2.
An approach to the choice of the parameters of physiotherapeutic and biophysical influence on the visual nerve was proposed. The approach is based on parallel photo- and magnetostimulation of excitable fibers in which the morphological and electrophysiological properties of fibers and some parameters of the pathological processes associated with partial artophy and ischemia are taken into account. A method for correlating the photostimulation by light flashes (intensity 65 mWt at emission wavelength 660 nm) of a portion of the retina with the choice of the parameters of magnetic influence (amplitude 73 mT, duration of the wave front of 40 ms, and frequency of pulse sequence of about 1 Hz) on the visual nerve was developed.  相似文献   

3.
Egg yolk is normally used as a protective agent to freeze semen of equine and other species. However, addition of egg yolk in extenders is not without disadvantages and the demand to find cryoprotective alternatives is strong. The objective of this study was to test the cryoprotective capacities of liposomes composed of egg yolk phospholipids. Two experiments were conducted: 1) the first to determine the optimal composition and concentration of liposomes to preserve post-thaw motility and membrane integrity of spermatozoa; 2) the second to assess in vivo the cryoprotective capacities of these liposomes. In Experiment 2, post-thaw motility and membrane integrity of spermatozoa were also analyzed. Experiment 1 demonstrated that liposomes composed of phospholipids E80 (commercial lecithins from egg yolk composed mainly of phosphatidylcholine and phosphatidylethanolamine) and of Hank's salts-glucose-lactose solution (E80-liposomes) were the most efficient in preserving post-thaw motility. The optimal concentration was 4 % (v/v). In Experiment 2, fertility rate after artificial insemination of semen frozen with E80-liposomes was 55 % (22/40) compared with 68 % (27/40) with the control extender containing egg yolk (EY) (p = 0.23). Post-thaw motility parameters were higher with EY than with E80-liposomes (p < 0.0001). For post-thaw membrane integrity no difference was observed between the two extenders (p = 0.08). Liposomes composed of egg yolk phospholipids appeared to be a promising alternative to replace egg yolk in semen freezing extenders in equine species.  相似文献   

4.
The precedence effect refers to the fact that humans are able to localize sound sources in reverberant environments. In this study, sound localization was studied with dual sound source: stationary (lead) and moving (lag) for two planes: horizontal and vertical. Duration of lead and lag signals was 1s. Lead-lag delays ranged from 1-40 ms. Testing was conducted in free field, with broadband noise busts (5-18 kHz). The listeners indicated the perceived location of the lag signal. Results suggest that at delays above to 25 ms in horizontal plane and 40 ms in vertical plane subjects localized correctly the moving signal. At short delays (up to 8-10 ms), regardless of the instructions, all subjects pointed to the trajectory near the lead. The echo threshold varied dramatically across listeners. Mean echo thresholds were 7.3 ms in horizontal plane and 10.1 ms in vertical plane. Statistically significant differences were not observed for two planes [F(1, 5) = 5.52; p = 0.07].  相似文献   

5.
Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.  相似文献   

6.
The amplitude and latency of the mismatch negativity (MMN) elicited by occasional shorter-duration tones (25 and 50 ms) in a sequence of 75 ms standard tones were studied in 40 healthy subjects (9–84 years). The replicability and age dependence of the MMN-responses were determined. The 25 ms deviant tone evoked a clear response in 39 of the subjects, while the 50 ms deviant tone evoked an observable MMN only in 32 of the subjects. The MMN peak amplitude for the 25 ms deviants was significantly larger than for the 50 ms deviants. There was no significant difference in the peak latencies (measured from stimulus offset). For the 25 ms deviant, the amplitude diminished with increasing age. The MMN curves for the 25 ms deviant, measured on separate days in 14 subjects, looked very replicable. As a result of noise and filtering effect, the product-moment correlations were poor. The results indicate that the signal-to-noise ratio for the MMN to 25 ms deviants, obtained even in a 25 min recording session, is large enough for clinical use and individual diagnostics when undetectable (or very low amplitude) MMN is used as a sign of pathology. However, judged from the low correlation coefficients, despite the good replicability in visual evaluation, better methods for MMN quantification have to be used for clinical follow-up.  相似文献   

7.
In the present work the results of the known investigation of the influence of combined static (40 μT) and alternating (amplitude of 40 nT) parallel magnetic fields on the current through the aqueous solution of glutamic acid, were successfully replicated. Fourteen experiments were carried out by the application of the combined magnetic fields to the solution placed into a Plexiglas reaction vessel at application of static voltage to golden electrodes placed into the solution. Six experiments were carried out by the application of the combined magnetic fields to the solution placed in a Plexiglas reaction vessel, without electrodes, within an electric field, generated by means of a capacitor at the voltage of 27 mV. The frequency of the alternating field was scanned within the bounds of 1.0 Hz including the cyclotron frequency corresponding to a glutamic acid ion and to the applied static magnetic field. In this study the prominent peaks with half-width of ~0.5 Hz and with different heights (till 80 nA) were registered at the alternating magnetic field frequency equal to the cyclotron frequency (4.2 Hz). The general reproducibility of the investigated effects was 70% among the all solutions studied by us and they arose usually after 40–60 min. after preparation of the solution. In some made-up solutions the appearance of instability in the registered current was noted in 30–45 min after the solution preparation. This instability endured for 20–40 min. At the end of such instability period the effects of combined fields action appeared practically every time. The possible mechanisms of revealed effects were discussed on the basis of modern quantum electrodynamics.  相似文献   

8.
The increasing needs for environmental friendly antifouling coatings have led to investigation of new alternatives for replacing copper and TBT-based paints. In this study, results are presented from larval settlement assays of the barnacle Amphibalanus (= Balanus) amphitrite on planar, interdigitated electrodes (IDE), having 8 or 25 mum of inter-electrode spacing, upon the application of pulsed electric fields (PEF). Using pulses of 100 ms in duration, 200 Hz in frequency and 10 V in pulse amplitude, barnacle settlement below 5% was observed, while similar IDE surfaces without pulse application had an average of 40% settlement. The spacing between the electrodes did not affect cyprid settlement. Assays with lower PEF amplitudes did not show significant settlement inhibition. On the basis of the settlement assays, the calculated minimum energy requirement to inhibit barnacle settlement is 2.8 W h m(-2).  相似文献   

9.
We have analyzed gene expression in hemopoietic and testicular cell types after their exposure to 50 MHz radiofrequency (RF) non-ionizing radiation modulated (80%) with a 16 Hz frequency. The exposure system generates a 0.2 microT magnetic field parallel to the ground and a 60 V/m electric field orthogonal to the earth's magnetic field. Exposure conditions were selected so as to interfere with the calcium ion flow. Under these electromagnetic field (EMF) conditions, we observed an overexpression of the ets1 mRNA in Jurkat T-lymphoblastoid and Leydig TM3 cell lines. This effect was observed only in the presence of the 16 Hz modulation, corresponding to the resonance frequency for calcium ion with a DC magnetic field of 45.7 microT. We have also identified a putative candidate gene repressed after EMF exposure. The experimental model described in this paper may contribute to the understanding of the biological mechanisms involved in EMF effects.  相似文献   

10.
Many species of electric fish show diurnal or socially elicited variation in electric organ discharge amplitude. In Sternopygus macrurus, activation of protein kinase A by 8-bromo-cAMP increases electrocyte sodium current magnitude. To determine whether the behavioral plasticity in electric organ discharge amplitude is controlled by electrocyte biophysical properties, we examined whether the effects of phosphorylation on ion currents in the electric organ translate directly into electric organ discharge changes. We injected the electric organ of restrained fish with 8-bromo-cAMP and monitored the electric organ discharge. The effect of protein kinase A activation on electrocyte action potentials was examined in isolated electric organ using two-electrode current clamp. Electric organ discharge and action potential amplitude and pulse duration increased in response to 8-bromo-cAMP. Pulse and action potential duration both increased by about 25%. However, the increase in electric organ discharge amplitude (approximately 400%) was several-fold greater than the action potential amplitude increase (approximately 40%). Resting membrane resistance decreased in electrocytes exposed to 8-bromo-cAMP. We propose that in the Thevenin equivalent circuit of the electric organ a moderate increase in action potential amplitude combined with a decrease in internal resistance produces a greater voltage drop across the external resistance (the water around the fish), accounting for the large increase in the externally recorded electric organ discharge.  相似文献   

11.
The goal of the research reported here is to narrow the range of uncertainty about peripheral nerve stimulation (PNS) thresholds associated with whole body magnetic field exposures at 50/60 Hz. This involved combining PNS thresholds measured in human subjects exposed to pulsed magnetic gradient fields with calculations of electric fields induced in detailed anatomical models of the body by that same exposure system. PNS thresholds at power frequencies (50/60 Hz) can be predicted from these data due to the wide range of pulse durations (70 mus to 1 ms), the length of the pulse trains (several tens of ms), and the exposure of a large part of the body to the magnetic field. These data together with the calculations of the rheobase electric field exceeded in 1% (E(1%)) of two anatomical body models, lead to a median PNS detection threshold of 47.9 +/- 4.4 mT for a uniform 60 Hz magnetic field exposure coronal to the body. The threshold for the most sensitive 1% of the population is about 27.8 mT. These values are lower than PNS thresholds produced by magnetic fields with sagittal and vertical orientations or nonuniform exposures.  相似文献   

12.
The post-tetanic decay in miniature excitatory junction potential (MEJP) frequency and in facilitation of excitatory junction potentials (EJPs) was measured at crayfish neuromuscular junctions. A 2-s tetanus at 20 Hz caused the MEJP frequency to increase an average of 40 times and the EJP amplitude to increase an average of 13 times. Both MEJP frequency and EJP facilitation decayed with two time constants. The fast component of MEJP frequency decay was 47 ms, and that of EJP facilitation was 130 ms. The slow component of MEJP frequency decay was 0.57 s, and that of EJP facilitation was approximately 1 s. These results were consistent with the predictions of a residual calcium model, with a nonlinear relationship between presynaptic calcium concentration and transmitter release.  相似文献   

13.
Recent epidemiological studies suggest a link between transport magnetic fields (MF) and certain adverse health effects. We performed measurements in workplaces of engineers on Russian DC and Swiss AC powered (16.67 Hz) electric trains using a computer based waveform capture system with a 200 Hz sampling rate. MF in DC and AC trains show complex combinations of static and varying components. The most probable levels of quasistatic MF (0.001-0.03 Hz) were in the range 40 microT. Maximum levels of 120 microT were found in DC powered locomotives. These levels are much higher than the geomagnetic field at the site of measurements. MF encountered both in DC and AC powered rail systems showed irregular temporal variability in frequency composition and amplitude characteristics across the whole frequency range studied (0-50 Hz); however, more than 90% of the magnetic field power was concentrated in frequencies 相似文献   

14.
A novel technique to assess electric activity of the whole nerve in situ is advanced based on harmonic analysis of impedance microvariations of femoral nerve in narcotized rats recorded with extracellular electrodes. The amplitude spectrum of nerve bioimpedance (Z-spectrum) made it possible to determine the level of neural asynchronous activity in the frequency band of 20–600 Hz with amplitude resolution of 1% and to reveal the rhythmic activity at Mayer (0.1 Hz) and respiration frequencies with amplitude resolution of 0.1%. Systemic administration of atropine used to shift the sympathovagal balance in favor of sympathetic system increased both rhythmic and unrhythmic (asynchronous) neural activity. The study demonstrated that harmonic analysis of nerve bioimpedance is a novel and potent tool to assess neural activity in the frequency domain.  相似文献   

15.
The localization of a sum of acoustic signals by two northern fur seals in air depending on sound parameters was investigated using the method of instrumental conditioned reflexes with food reinforcement. It was found that sound perception of northern fur seal proceeds by the binaural mechanism. The time/intensity interchange coefficient was 570 microseconds/dB for series of clicks (with amplitude maximum at 1 kHz) and 250 microseconds/dB for tonal impulses with a frequency of 1 kHz. With click amplitudes being equal, the number of approaches of the animal to the source of the first signal reached a 75% level at a delay of the second signal 0.07 ms (the minimum delay); with a delay of 6 ms (the maximum delay) and more, the fur seal, probably hears two separate signals. The minimum delay depended little on the duration of tonal impulses (with a frequency of 1 kHz) and was 0.3-0.7 ms; the maximum delay was 9-11 ms for tonal impulses with a duration of 3 ms and 37-40 ms with impulse duration 20 ms. The precedence effect became apparent at a greater delay for smooth fronts of impulses than for rectangular fronts.  相似文献   

16.
The paper reports spontaneous generation of weak electric discharges with an amplitude of 0.4–1.0 mV and a frequency of 3–9 min–1 by solitary Synodontis caudovittatus fish. When fish individuals were tested in pairs, their aggressive–defense interactions were associated with an increase in the amplitude of the discharges (up to 30–45 mV) compared to the discharges of individual fish, while the duration of the pulses increased up to 20–25 ms due to the prolongation of the second phase. In S. eupterus, electric activity was recorded only in the course of aggression–defense interactions, while spontaneous generation of discharges was not observed at all. The paper discusses the different aspects of electrocummunication between the catfish including the role of the reversion of polarity of the merged summated discharges with increased duration.  相似文献   

17.
Experiments were conducted to see whether the cellular response to electromagnetic (EM) fields occurs through a detection process involving temporal sensing. L929 cells were exposed to 60 Hz magnetic fields and the enhancement of ornithine decarboxylase (ODC) activity was measured to determine cellular response to the field. In one set of experiments, the field was turned alternately off and on at intervals of 0.1 to 50 s. For these experiments, field coherence was maintained by eliminating the insertion of random time intervals upon switching. Intervals ≥ 1 s produced no enhancement of ODC activity, but fields switched at intervals ≥ 10 s showed ODC activities that were enhanced by a factor of approximately 1.7. These data indicate that it is the interval over which field parameters (e.g., amplitude or frequency) remain constant, rather than the interval over which the field is coherent, that is critical to cellular response to an EMF. In a second set of experiments, designed to determine how long it would take for cells to detect a change in field parameters, the field was interrupted for brief intervals (25–200 ms) once each second throughout exposure. In this situation, the extent of EMF-induced ODC activity depended upon the duration of the interruption. Interruptions ≥ 100 ms were detected by the cell as shown by elimination of field-induced enhancement of ODC. That two time constants (0.1 and 10 s) are involved in cellular EMF detection is consistent with the temporal sensing process associated with bacterial chemotaxis. By analogy with bacterial temporal sensing, cells would continuously sample and average an EM field over intervals of about 0.1 s (the “averaging” time), storing the averaged value in memory. The cell would compare the stored value with the current average, and respond to the EM field only when field parameters remain constant over intervals of approximately 10 s (the “memory” time). Bioelectromagnetics 18:388–395, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The permeability of 5(6)-carboxyfluorescein (CF) through the phospholipid bilayer membranes was measured by using the system in which the CF-containing phospholipid vesicles (liposomes) were suspended in the gas-liquid flow in an external loop airlift bubble column. The airlift was operated at various superficial gas velocities UG up to 2.4 cm/s at 25 and 40 degrees C. The CF-containing liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) had the nominal diameters of 50, 100, and 200 nm. The 50- and 100-nm liposomes were stable at 40 degrees C for 5 h even at a high UG value of 2.4 cm/s based on the observed turbidity of the liposome suspension in the airlift. On the other hand, the 200-nm liposomes were stable at a low UG value of 1.4 cm/s, although a progressive decrease in size of the liposomes was implied at the high UG value of 2.4 cm/s. The permeability coefficient PCF of CF through the lipid membrane of the 100-nm liposomes was significantly increased with increasing UG at a high temperature of 40 degrees C, while at a low temperature of 25 degrees C the PCF value was little dependent on UG. As a typical result on the above liposomes, the PCF value (9.2 x 10(-11) cm/s) at 40 degrees C and UG = 2.4 cm/s in the airlift was more than 15 times larger than that at 25 degrees C in the static liquid corresponding to UG = 0. In addition, the dependence of the PCF value on UG at 40 degrees C became more significant with increasing the size of liposomes suspended. The results obtained revealed that the permeability of the liposome membranes could be regulated by suspending the liposomes in the gas-liquid flow in the airlift without modulating the membrane composition of liposomes.  相似文献   

19.
The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately -50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half-time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time-dependent transformation characterized by a large increase in amplitude and in activation kinetics.  相似文献   

20.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号