首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Spatial and temporal variability of the phytoplankton community in the tropical coastal Imboassica lagoon, an environment naturally isolated from the ocean by a narrow sandbar, was analysed every two weeks for 19 months by sampling three sites. During this study, the lagoon received direct input of marine water three times, resulting in remarkable salinity, nutrient concentrations and phytoplankton biomass variations in both temporal and spatial aspects. The phytoplankton biomass presented relatively low values ranging, on average, from 0.54 mg x L(-1) in the station closest to the sea (station 1) to 1.34 mg x L(-1) in the station close to a macrophyte bank (station 3). Diatoms and cryptomonads dominated in stations 1 and 2 (located relatively close to station 1, yet receiving the runoff of domestic sewage), and euglenoids, cryptomonads and dinoflagellates at station 3. Stations 1 and 2 usually presented the same dominant species but station 2 presented a higher phytoplankton biomass. On the other hand, station 3 showed more similar results concerning phytoplankton biomass with station 2, however the dominant species were usually different. The high fluctuations of salinity and the reduced nutrient availability are pointed out as the main factors structuring the dynamics of the phytoplankton community at the Imboassica lagoon.  相似文献   

2.
Nutrient limitation and algal blooms in urbanizing tidal creeks   总被引:1,自引:0,他引:1  
Tidal creeks are commonly found in low energy systems on the East and Gulf Coasts of the United States, and are often subject to intense watershed human development. Many of these creeks are receiving urban and suburban runoff containing nutrients, among other pollutants. During the period 1993-2001, we studied three tidal creeks located in southeastern North Carolina, a rapidly urbanizing area. All three creeks received anthropogenic nutrient loading. Oligohaline to mesohaline stations in upper tidal creek regions had much higher nutrient (especially nitrate-N) concentrations than lower creek areas, and hosted spring and summer phytoplankton blooms that at times exceeded 200 μg chlorophyll a l−1. Phytoplankton biomass during winter was low at all stations in all three creeks. Spring and summer nutrient addition bioassay experiments were conducted to characterize the nutrients limiting phytoplankton growth. Water from high salinity stations in all three creeks always showed significant positive responses to nitrate-N inputs, even at concentrations as low as 50 μg N l−1. Low salinity stations in upper creek areas often showed significant responses to nitrate-N inputs, but on occasion showed sensitivity to phosphorus inputs as well, indicating the influence of anthropogenic nitrate loading. During several experiments, one of the upper stations showed no positive response to nutrient inputs, indicating that these stretches were nutrient replete, and further phytoplankton growth appeared to be light-limited either by phytoplankton self-shading or turbidity. Water from upper creek areas yielded much higher chlorophyll a concentrations in bioassay experiments than did lower creek water. In general, these urbanizing tidal creeks were shown to be very sensitive to nitrogen loading, and provide a physical environment conducive to phytoplankton bloom formation in nutrient-enriched areas. Tidal creeks are important ecological resources in that they are considered to be nursery areas for many species of fish and shellfish. To protect the ecological function of these small, but very abundant estuarine systems, management efforts should recognize their susceptibility to algal blooms and focus on control of nonpoint source nutrient inputs, especially nitrogen.  相似文献   

3.
The short-term temporal dynamics of phytoplankton composition was compared among coral reef waters, the adjacent ocean and polluted harbour water from July until October along the south-western coast of Curaçao, southern Caribbean. Temporal variations in phytoplankton pigment 'fingerprints' (zeaxanthin, chlorophyll b, 19'-hexanoyloxyfucoxanthin, fucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll c2 and c3 relative to chlorophyll a) in the ocean were also observed in waters overlying the reef. However, with respect to specific pigments and algal-size distribution, the algal composition in reef waters was usually slightly different from that in the oceanic water. Phytoplankton biomass (chlorophyll a) was either higher or lower than in the oceanic water. The relative amount of fucoxanthin and peridinin was usually higher, and the relative and absolute amount of zeaxanthin was significantly lower than in oceanic water. Zeaxanthin-containing Synechococci were significantly reduced in reef water. Average algal cell size increased from the open water to the reef and the harbour entrance. Large centric diatoms (>20 m Ø) were better represented in reef than in oceanic water. In reef-overlying waters, the nitrate and nitrite concentrations were higher than in oceanic water. In front of the town, anthropogenic eutrophication (sewage discharge and ground water seepage) resulted in higher NH4, NO3 and PO4 concentrations than at other reef stations. This concurred with significantly enhanced phytoplankton biomass (chlorophyll a), chlorophyll c2 and peridinin amounts at Town Reef compared with the other reef stations. Polluted harbour water usually showed the highest phytoplankton biomass of all stations, dominated by diatoms and dinoflagellates. Conditions in reef waters and harbour water promoted the occurrence and the relative abundance of diatoms and dinoflagellates. Harbour water did not influence the phytoplankton composition and biomass at reef stations situated >5 km away from the harbour entrance. We conclude that phytoplankton undergoes a shift in algal composition during transit over the reef. The dominant processes appear to be selective removal of zeaxanthin-containing Synechococcus (by the reef benthos) and (relative) increase in diatoms and dinoflagellates. The difference in the phytoplankton composition between reef and oceanic waters tends to increase with decreasing dilution of reef water with ocean water.  相似文献   

4.
The seasonal dynamics of size-fractionated phytoplankton biomassin a coral reef area were investigated off Sesoko Island, Okinawa,Japan. Chlorophyll (Chl) a and nutrient concentrations werelow almost all year round, showing no clear seasonal variabilitywith values similar to those in some other coral reef areas.Picoplankton dominated the phytoplankton community; averagecontributions of pico-, nano- and microplankton to the totalChl a biomass were 52, 34 and 11%, respectively. However, in1998, when the seawater temperature was extremely high and coralbleaching occurred due to the ENSO event, low Chl a coupledwith high nutrient concentrations were observed. This was associatedwith a decrease in the picoplankton size fraction. We suggestthat the high seawater temperature in 1998 decreased the growthrate of the picoplankton; however, the micro- and nanoplanktonmay also be limited by other factors such as low nutrient concentrations.  相似文献   

5.
Factors that regulate phytoplankton dynamics in shallow, productive lakes are poorly understood, due to their predisposition for frequent algal blooms and sediment resuspension events. In Lake Apopka, greatest phytoplankton biomass reflects wind-induced resuspension of algae (meroplankton) that exists on the aphotic lake bottom in a layer approximately 5 cm thick; this assemblage is dominated by diatoms (>60% of total biomass) that can occur in resting stages. Once exposed to moderate light, meroplankton are capable of growth and photosynthetic rates comparable with surface populations. In Lake Okeechobee, remote sensing was used to assess the basin-wide distribution of suspended particles. Satellite reflectance values agreed well with in situ particle densities at 20 in-lake stations (average r2; LANDSAT = 0.81, AVHRR = 0.53), and maps of algal blooms (r2 = 0.79, p ≤ 0.01). The greatest chlorophyll concentrations occurred in the vicinity of tributary nutrient inputs at the lake's perimeter, while turbidity increased towards the center of the lake reflecting predominant water circulation patterns. These results underscore the importance of physical-biological interactions in lakes.  相似文献   

6.
Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.  相似文献   

7.
Spatial and temporal dynamics in phytoplankton reflect of the combined effects of the physical and chemical environments and associated biological responses. Although alterations in phytoplankton are well-documented for a variety of lentic waters, the exact linkages between environmental forcing and phytoplankton assemblages remain poorly understood (particularly for coastal systems). A recurrent sediment resuspension event occurs every late winter/early spring in southeastern Lake Michigan, often extending greater than ten km in width and 300 km in length. Inherently, such a large-scale and dramatic physical process would be thought to dramatically influence phytoplankton assemblages; however, linkages between the turbidity plume and phytoplankton assemblages have been postulated, but never verified. As such, the episodic nature of the plume provided an opportunity to examine the effects of a short-term physical forcing event on coastal phytoplankton in relation to more persistent, seasonal meteorological forcing. Lake phytoplankton assemblages within and outside of the RCP were examined during the spring isothermal period from 1998 to 2000. Here, we describe results from the 1998 and 1999 field seasons characterizing the distribution of phytoplankton biomass and composition within and adjacent to the RCP and their relationship to particulate and dissolved constituents. In addition, the spatial and temporal patterns in production and photosynthetic characteristics of the phytoplankton community are examined.  相似文献   

8.
The movement of sediment between the lake bottom and water column of shallow lakes can be sizeable due to the large potential for resuspension in these systems. Resuspended sediments have been shown to alter phytoplankton community composition and elevate water column production and nutrient concentrations. We measured the summer sedimentation rates of two lakes in 2003 and six lakes in 2004. All lakes were shallow and located in the Alaskan Arctic. In 2004, turbidity, light attenuation, total sediment:chlorophyll a mass in the sediment traps, and thermal stratification were also measured in each of the lakes. The sediment:chlorophyll a mass was much greater than if the sediment was derived from phytoplankton production in all of the lakes, indicating that the source of the sedimenting material was resuspension and allochthonous inputs. Consistent with these findings, the temporal variation in sedimentation rate was synchronous between most lakes, and sedimentation rate was positively related to wind speed and rainfall suggesting that sedimentation rate was strongly influenced by landscape-scale factors (e.g., wind and rain events). Two of the lakes are located on deposits of loess that accumulated during past glacial periods. These two lakes had sedimentation rates that were significantly greater and more variable than any of the other lakes in the study, as well as high turbidity and light attenuation. Our results indicate that sedimentation in these shallow arctic lakes is supported primarily by allochthonous inputs and resuspension and that landscape-scale factors (e.g., weather and geology) impact on the transport of materials between the lake bottom and water column. Handling editor: J. Saros  相似文献   

9.
The principal environmental factors influencing the seasonal dynamics of phytoplankton were examined from September 1997 to July 1998 in three stations along a 26-km stretch of the lowland course of River Adige (northeast Italy). Nutrient concentrations did not appear to be limiting for the phytoplankton growth. Annual minimum concentrations of reactive and total phosphorus, and dissolved inorganic nitrogen were 22 μg P l−1, 63 μg P l−1 and 0.9 mg N l−1, respectively. The most critical forcing factors were physical variables, mainly water discharge and other variables related to hydrology, i.e. suspended solids and turbidity, which acted negatively and synchronously by diluting phytoplankton cells and decreasing light availability. Higher algal biomass was recorded in early spring, in conditions of lower flow velocity and increasing water temperature. In late spring and summer, higher water discharge caused a decrease in phytoplankton biomass. Conversely, low algal biomass in late autumn and winter, during low discharge, was mainly related to low water temperatures and shorter photoperiod. Physical constraints had a significant and measurable effect not only on the development of total biomass, but also on the temporal dynamics of the phytoplankton community. Abiotic and biotic variables showed a comparable temporal development in the three sampling stations. The small number of instances of spatial differences in phytoplankton abundance during the period of lower flow velocity were related to the increasing importance of biological processes and accumulation of phytoplankton biomass.  相似文献   

10.
Corals are known to flourish in various turbid environments around the world. The quantitative distinction between clear and turbid water in coral habitats is not well defined nor are the amount of sediment in suspension and rates of sedimentation used to evaluate the condition of reef environments well established. This study of sediment resuspension, transport, and resulting deposition on a fringing reef flat off Molokai, Hawaii, uses a year of time-series data from a small, instrumented tripod. It shows the importance of trade winds and ocean wave heights in controlling the movement of sediment. Sediment is typically resuspended daily and the dominant controls on the magnitude of events (10–25 mg/l) are the trade-wind-generated waves and currents and tidal elevation on the reef flat. The net flux of sediment on this reef is primarily along the reef flat in the direction of the prevailing trade winds (to the west), with a secondary direction of slightly offshore, towards a zone of low coral abundance.These results have application to reef studies and reef management in other areas in several ways. First, the observed resuspension and turbidity results from fine-grained terrigenous sediment that appears to be trapped and recycled on the reef flat. Thus corals are subjected to light attenuation by the same particles repeatedly, however small the amount. Secondly, the measurements show high temporal variability (from daily to seasonal scales) of sediment resuspension, indicating that single measurements are inadequate to accurately describe conditions on a reef flat.Communicated by: P.K. Swart  相似文献   

11.
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ.  相似文献   

12.
Liu  Yang  Zhang  Min  Peng  Wenqi  Wu  Naicheng  Qu  Xiaodong  Yu  Yang  Zhang  Yuhang  Yang  Chenyu 《Aquatic Ecology》2021,55(2):379-399

Different aquatic organisms have different reactions to environmental variations due to their different ways of reaction traits. Understanding the effect of hydrological disturbance on lake from the perspective of multiple aquatic organisms is important for lake management. Poyang Lake (PYL) experiences severe hydrological disturbance under the effects of flood pulse during the rainy season. In this study, we analyzed the responses of phytoplankton, zooplankton, and macroinvertebrates to hydrological disturbance during the rainy season in PYL. Flood pulse determined the spatial variation in turbidity (Turb), transparency (Trans), dissolved oxygen (DO), total phosphorus (TP), and soluble reactive phosphorus. Physical factors (Turb, Trans, conductivity) explained phytoplankton (9.6%) and zooplankton (15%) community variation, and the combination of physical and nutrient factors explained macroinvertebrate (3.8%) community variation. Cyclotella sp., Attheya zachariasi, and Melosira ambigua were the keystone taxa of phytoplankton, and these taxa were driven by Turb and Trans. Brachionus angularia, Polyarthra vulgaris, Filinia longiseta, and Diffugia globulosa were the keystone taxa of zooplankton and entire aquatic organisms, which contributed a lot to maintain the biological community stability possibly through the food web. These keystone taxa were stimulated by high Trans, DO, dissolved organic carbon (DOC) and nitrate (NO3?). We found habitat conditions (Turb, Trans and DO) were the prominent factors influencing the aquatic organism structure in strong hydrological disturbance environment. For the keystone taxa, both habitat conditions (i.e., DO) and exogenous nutrient inputs (i.e., DOC and NO3?) caused significant effect. This study provides new insights into the holistic response of multiple aquatic communities to flood pulse as well as the role of keystone species in maintaining community stability, which could guide the conservation and management of seasonal lake ecosystems.

  相似文献   

13.
In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health. Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal development will provide an important management tool for controlling coral disease epizootics.  相似文献   

14.
Middle Reef is an inshore turbid zone reef located 4 km offshore from Townsville, Queensland, Australia. The reef consists of four current-aligned, interconnected reef patches that have reached sea level and formed reef flats. It is regularly exposed to high turbidity (up to 50 mg l−1) generated by wave-driven sediment resuspension or by episodic flood plumes. Middle Reef has a high mean hard coral cover (>39%), relatively low mean macro-algal cover (<15%) and a coral community comprising at least 81 hard coral species. Cluster analysis differentiated six benthic communities which were mapped onto the geomorphological structure of the reef to reveal a spatially patchy community mosaic that reflects hydrodynamic and sediment redistribution processes. Coral cover data collected annually from windward slope transects since 1993 show that coral cover has increased over the last ~15 years despite a history of episodic mortality events. Although episodic mortality may be interpreted as an indication of marginality, over decadal timescales, Middle Reef has recovered rapidly following mortality events and is clearly a resilient coral reef.  相似文献   

15.
Shallow water bodies can exist in alternative stable states, a clear water state with high coverage of macrophytes or a turbid state with high phytoplankton biomass. The alternative equilibria hypothesis has been proposed to explain the occurrence of the alternative stable states (Scheffer et al., 1993)[1], which assumes that: 1),  相似文献   

16.
1. We examined the effects of nutrients, turbulent mixing, mosquitofish, Gambusia affinis Baird and Girard and sediments on algal composition, algal biomass and autotrophic picoplankton (APP) abundance in a 6-week experiment of factorial design in twenty-four 5-m3 outdoor mesocosms during late autumn 1995.
2. Turbulent mixing decreased surface temperature and increased turbidity, which also was increased by the addition of sediments. Total algal biomass was significantly enhanced by nutrients and mixing, and decreased by the sediment treatment. In the mixing × nutrient treatment, algal biomass increased more than expected from the individual effects, while the fish × mixing and mixing × sediment treatments increased algal biomass less than expected.
3.  Cryptomonas (cryptomonad) blooms were observed in the unmixed, high nutrient treatment; Synedra (diatom) blooms were observed in the high nutrient, high sediment treatment; Ulothrix (green algae) blooms were observed in the mixed, high nutrient, low sediment treatment.
4. Eukaryotic APP abundances were increased by sediment addition and by turbulent mixing, and increased synergistically by mixing × sediment and mixing × nutrient interactions. Prokaryotic APP abundances were decreased by nutrient enhancement and by a mixing × nutrient interaction. There were no main effects of fish on APP abundance, but fish were involved in some of the two–way interactions.
5. The large number of significant interaction effects indicates that APP and other phytoplankton are regulated by a complex set of interdependent factors which should be considered simultaneously in studies of phytoplankton population dynamics and community composition.  相似文献   

17.
Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top–down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other’s effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.  相似文献   

18.
Various aspects of phytoplankton photosynthesis were investigated between 1968 and 1980 in Neusiedlersee, Austria, a shallow (z̄ = 1.3 m), well mixed lake with much turbidity resulting from frequent resuspension of inorganic sediment particles. The influences of the great environmental variability on biomass, photosynthesis and phytoplankton production were determined and discussed with respect to the increasing nutrient concentrations in the lake. Investigations of bacterioplankton biomass and production revealed their importance for nutrient regeneration and as food for large zooplankton populations. The results are compared with those from several other shallow lakes, and an attempt is made to identify characteristics to distinguish the different types.  相似文献   

19.
The following parameters were measured during May 1976 along the coasts of the Gulf of Elat (or: Gulf of Aqaba): phytoplankton species composition, chlorophyll content and photosynthetic production; weight of suspended particles and nutrient concentration; chlorophyll content of the sediments. The study areas were coral reefs of the northern part of the Gulf and a mangrove pool south of it. Phytoplankton characteristics and nutrient levels are those of oligotrophic waters. However, the sediments harbour such an abundant plant biomass that in coastal waters per m2 surface area, there is several hundred times more chlorophyll in the sand than in the plankton. Reasons why both the mangrove and the coral reef may exhibit the same trends are discussed.  相似文献   

20.
This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号