首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the parietal cortex is traditionally associated with spatial attention and sensorimotor integration, recent evidence also implicates it in higher order cognitive functions. We review relevant results from neuron recording studies showing that inferior parietal neurons integrate information regarding target location with a variety of non-spatial signals. Some of these signals are modulatory and alter a stimulus-evoked response according to the action, category, or reward associated with the stimulus. Other non-spatial inputs act independently, encoding the context or rules of a task even before the presentation of a specific target. Despite the ubiquity of non-spatial information in individual neurons, reversible inactivation of the parietal lobe affects only spatial orienting of attention and gaze, but not non-spatial aspects of performance. This suggests that non-spatial signals contribute to an underlying spatial computation, possibly allowing the brain to determine which targets are worthy of attention or action in a given task context.  相似文献   

2.
Lee H  Simpson GV  Logothetis NK  Rainer G 《Neuron》2005,45(1):147-156
Working memory has been linked to elevated single neuron discharge in monkeys and to oscillatory changes in the human EEG, but the relation between these effects has remained largely unexplored. We addressed this question by measuring local field potentials and single unit activity simultaneously from multiple electrodes placed in extrastriate visual cortex while monkeys were performing a working memory task. We describe a significant enhancement in theta band energy during the delay period. Theta oscillations had a systematic effect on single neuron activity, with neurons emitting more action potentials near their preferred angle of each theta cycle. Sample-selective delay activity was enhanced if only action potentials emitted near the preferred theta angle were considered. Our results suggest that extrastriate visual cortex is involved in short-term maintenance of information and that theta oscillations provide a mechanism for structuring the recurrent interaction between neurons in different brain regions that underlie working memory.  相似文献   

3.
Successful social interaction depends on not only the ability to identify with others but also the ability to distinguish between aspects of self and others. Although there is considerable knowledge of a shared neural substrate between self-action and others' action, it remains unknown where and how in the brain the action of others is uniquely represented. Exploring such agent-specific neural codes is important because one's action and intention can differ between individuals. Moreover, the assignment of social agency breaks down in a range of mental disorders. Here, using two monkeys monitoring each other's action for adaptive behavioral planning, we show that the medial frontal cortex (MFC) contains a group of neurons that selectively encode others' action. These neurons, observed in both dominant and submissive monkeys, were significantly more prevalent in the dorsomedial convexity region of the MFC including the pre-supplementary motor area than in the cingulate sulcus region of the MFC including the rostral cingulate motor area. Further tests revealed that the difference in neuronal activity was not due to gaze direction or muscular activity. We suggest that the MFC is involved in self-other differentiation in the domain of motor action and provides a fundamental neural signal for social learning.  相似文献   

4.
Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals'' fitness interdependent and the ‘free-rider’ problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation—often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction.  相似文献   

5.
Neuroscience research during the past ten years has fundamentally changed the traditional view of the motor system. In monkeys, the finding that premotor neurons also discharge during visual stimulation (visuomotor neurons) raises new hypotheses about the putative role played by motor representations in perceptual functions. Among visuomotor neurons, mirror neurons might be involved in understanding the actions of others and might, therefore, be crucial in interindividual communication. Functional brain imaging studies enabled us to localize the human mirror system, but the demonstration that the motor cortex dynamically replicates the observed actions, as if they were executed by the observer, can only be given by fast and focal measurements of cortical activity. Transcranial magnetic stimulation enables us to instantaneously estimate corticospinal excitability, and has been used to study the human mirror system at work during the perception of actions performed by other individuals. In the past ten years several TMS experiments have been performed investigating the involvement of motor system during others' action observation. Results suggest that when we observe another individual acting we strongly 'resonate' with his or her action. In other words, our motor system simulates underthreshold the observed action in a strictly congruent fashion. The involved muscles are the same as those used in the observed action and their activation is temporally strictly coupled with the dynamics of the observed action.  相似文献   

6.
It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC) is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting) and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies). Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments.  相似文献   

7.
Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping.  相似文献   

8.
Mammalian odorant receptors form a large, diverse group of G protein-coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain.  相似文献   

9.
Lesion to the posterior parietal cortex in monkeys and humans produces spatial deficits in movement and perception. In recording experiments from area 7a, a cortical subdivision in the posterior parietal cortex in monkeys, we have found neurons whose responses are a function of both the retinal location of visual stimuli and the position of the eyes in the orbits. By combining these signals area 7 a neurons code the location of visual stimuli with respect to the head. However, these cells respond over only limited ranges of eye positions (eye-position-dependent coding). To code location in craniotopic space at all eye positions (eye-position-independent coding) an additional step in neural processing is required that uses information distributed across populations of area 7a neurons. We describe here a neural network model, based on back-propagation learning, that both demonstrates how spatial location could be derived from the population response of area 7a neurons and accurately accounts for the observed response properties of these neurons.  相似文献   

10.
Mushiake H  Saito N  Sakamoto K  Itoyama Y  Tanji J 《Neuron》2006,50(4):631-641
To achieve a behavioral goal in a complex environment, we must plan multiple steps of motor behavior. On planning a series of actions, we anticipate future events that will occur as a result of each action and mentally organize the temporal sequence of events. To investigate the involvement of the lateral prefrontal cortex (PFC) in such multistep planning, we examined neuronal activity in the PFC of monkeys performing a maze task that required the planning of stepwise cursor movements to reach a goal. During the preparatory period, PFC neurons reflected each of all forthcoming cursor movements, rather than arm movements. In contrast, in the primary motor cortex, most neuronal activity reflected arm movements but little of cursor movements during the preparatory period, as well as during movement execution. Our data suggest that the PFC is involved primarily in planning multiple future events that occur as a consequence of behavioral actions.  相似文献   

11.
Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task.  相似文献   

12.
Neuronal correlates of a perceptual decision in ventral premotor cortex   总被引:11,自引:0,他引:11  
Romo R  Hernández A  Zainos A 《Neuron》2004,41(1):165-173
The ventral premotor cortex (VPC) is involved in the transformation of sensory information into action, although the exact neuronal operation is not known. We addressed this problem by recording from single neurons in VPC while trained monkeys report a decision based on the comparison of two mechanical vibrations applied sequentially to the fingertips. Here we report that the activity of VPC neurons reflects current and remembered sensory inputs, their comparison, and motor commands expressing the result; that is, the entire processing cascade linking the evaluation of sensory stimuli with a motor report. These findings provide a fairly complete panorama of the neural dynamics that underlies the transformation of sensory information into an action and emphasize the role of VPC in perceptual decisions.  相似文献   

13.
Chersi F  Ferrari PF  Fogassi L 《PloS one》2011,6(11):e27652
The inferior part of the parietal lobe (IPL) is known to play a very important role in sensorimotor integration. Neurons in this region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated that most IPL motor neurons coding a specific motor act (e.g., grasping) show markedly different activation patterns according to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing). Some of these neurons (parietal mirror neurons) show a similar selectivity also during the observation of the same action sequences when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a specific grasping act codes not only the executed motor act, but also the agent's final goal (intention).In this work we present a biologically inspired neural network architecture that models mechanisms of motor sequences execution and recognition. In this network, pools composed of motor and mirror neurons that encode motor acts of a sequence are arranged in form of action goal-specific neuronal chains. The execution and the recognition of actions is achieved through the propagation of activity bursts along specific chains modulated by visual and somatosensory inputs.The implemented spiking neuron network is able to reproduce the results found in neurophysiological recordings of parietal neurons during task performance and provides a biologically plausible implementation of the action selection and recognition process.Finally, the present paper proposes a mechanism for the formation of new neural chains by linking together in a sequential manner neurons that represent subsequent motor acts, thus producing goal-directed sequences.  相似文献   

14.
The dorsolateral prefrontal and posterior parietal cortex play critical roles in mediating attention, working memory, and executive function. Despite proposed dynamic modulation of connectivity strength within each area according to task demands, scant empirical data exist about the time course of the strength of effective connectivity, particularly in tasks requiring information to be sustained in working memory. We investigated this question by performing time-resolved cross-correlation analysis for pairs of neurons recorded simultaneously at distances of 0.2–1.5 mm apart of each other while monkeys were engaged in working memory tasks. The strength of effective connectivity determined in this manner was higher throughout the trial in the posterior parietal cortex than the dorsolateral prefrontal cortex. Significantly higher levels of parietal effective connectivity were observed specifically during the delay period of the task. These differences could not be accounted for by differences in firing rate, or electrode distance in the samples recorded in the posterior parietal and prefrontal cortex. Differences were present when we restricted our analysis to only neurons with significant delay period activity and overlapping receptive fields. Our results indicate that dynamic changes in connectivity strength are present but area-specific intrinsic organization is the predominant factor that determines the strength of connections between neurons in each of the two areas.  相似文献   

15.
This study investigated whether monkeys recognize when a human experimenter imitates their actions towards an object. Two experimenters faced 10 pigtailed macaques, who were given access to an interesting object. One experimenter imitated the monkeys' object-directed actions, the other performed temporally contingent but structurally different object-directed actions. Results show a significant visual preference for the imitator during manual object manipulations, but not mouthing actions. We argue that the ability to match actions could be based on both visual-visual and kinaesthetic-visual matching skills, and that mirror neurons, which have both visual and motor properties, could serve as a neural basis for recognizing imitation. However, imitation recognition as assessed by visual preference does not necessarily imply the capacity to attribute imitative intentionality to the imitator. The monkeys might implicitly recognize when they are being imitated without deeper insight into the mental processes of others.  相似文献   

16.
Genovesio A  Brasted PJ  Mitz AR  Wise SP 《Neuron》2005,47(2):307-320
Many monkeys adopt abstract response strategies as they learn to map visual symbols to responses by trial and error. According to the repeat-stay strategy, if a symbol repeats from a previous, successful trial, the monkeys should stay with their most recent response choice. According to the change-shift strategy, if the symbol changes, the monkeys should shift to a different choice. We recorded the activity of prefrontal cortex neurons while monkeys chose responses according to these two strategies. Many neurons had activity selective for the strategy used. In a subsequent block of trials, the monkeys learned fixed stimulus-response mappings with the same stimuli. Some neurons had activity selective for choosing responses based on fixed mappings, others for choosing based on abstract strategies. These findings indicate that the prefrontal cortex contributes to the implementation of the abstract response strategies that monkeys use during trial-and-error learning.  相似文献   

17.
Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory–motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory–motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating motor preparation/execution processes) in accordance with the embodied social contexts.  相似文献   

18.
Dorris MC  Glimcher PW 《Neuron》2004,44(2):365-378
Behavioral studies suggest that making a decision involves representing the overall desirability of all available actions and then selecting that action that is most desirable. Physiological studies have proposed that neurons in the parietal cortex play a role in selecting movements for execution. To test the hypothesis that these parietal neurons encode the subjective desirability of making particular movements, we exploited Nash's game theoretic equilibrium, during which the subjective desirability of multiple actions should be equal for human players. Behavior measured during a strategic game suggests that monkeys' choices, like those of humans, are guided by subjective desirability. Under these conditions, activity in the parietal cortex was correlated with the relative subjective desirability of actions irrespective of the specific combination of reward magnitude, reward probability, and response probability associated with each action. These observations may help place many recent findings regarding the posterior parietal cortex into a common conceptual framework.  相似文献   

19.
The utilization of symbols such as words and numbers as mental tools endows humans with unrivalled cognitive flexibility. In the number domain, a fundamental first step for the acquisition of numerical symbols is the semantic association of signs with cardinalities. We explored the primitives of such a semantic mapping process by recording single-cell activity in the monkey prefrontal and parietal cortices, brain structures critically involved in numerical cognition. Monkeys were trained to associate visual shapes with varying numbers of items in a matching task. After this long-term learning process, we found that the responses of many prefrontal neurons to the visual shapes reflected the associated numerical value in a behaviorally relevant way. In contrast, such association neurons were rarely found in the parietal lobe. These findings suggest a cardinal role of the prefrontal cortex in establishing semantic associations between signs and abstract categories, a cognitive precursor that may ultimately give rise to symbolic thinking in linguistic humans.  相似文献   

20.
Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain–machine interface (BMIc) that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号