首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K+ channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell.  相似文献   

3.
Somatic sensation relies on the transduction of physical stimuli into electrical signals by sensory neurons of the dorsal root ganglia. Little is known about how and when during development different types of sensory neurons acquire transduction competence. We directly investigated the emergence of electrical excitability and mechanosensitivity of embryonic and postnatal mouse sensory neurons. We show that sensory neurons acquire mechanotransduction competence coincident with peripheral target innervation. Mechanotransduction competence arises in different sensory lineages in waves, coordinated by distinct developmental mechanisms. Sensory neurons that are mechanoreceptors or proprioceptors acquire mature mechanotransduction indistinguishable from the adult already at E13. This process is independent of neurotrophin‐3 and may be driven by a genetic program. In contrast, most nociceptive (pain sensing) sensory neurons acquire mechanosensitive competence as a result of exposure to target‐derived nerve growth factor. The highly regulated process of mechanosensory acquisition unveiled here, reveals new strategies to identify molecules required for sensory neuron mechanotransduction.  相似文献   

4.
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.  相似文献   

5.
Mechanotransduction modulates cellular functions as diverse as migration, proliferation, differentiation, and apoptosis. It is crucial for organ development and homeostasis and leads to pathologies when defective. However, despite considerable efforts made in the past, the molecular basis of mechanotransduction remains poorly understood. Here, we have investigated the genetic basis of mechanotransduction in Drosophila. We show that the fly heart senses and responds to mechanical forces by regulating cardiac activity. In particular, pauses in heart activity are observed under acute mechanical constraints in vivo. We further confirm by a variety of in situ tests that these cardiac arrests constitute the biological force-induced response. In order to identify molecular components of the mechanotransduction pathway, we carried out a genetic screen based on the dependence of cardiac activity upon mechanical constraints and identified Painless, a TRPA channel. We observe a clear absence of in vivo cardiac arrest following inactivation of painless and further demonstrate that painless is autonomously required in the heart to mediate the response to mechanical stress. Furthermore, direct activation of Painless is sufficient to produce pauses in heartbeat, mimicking the pressure-induced response. Painless thus constitutes part of a mechanosensitive pathway that adjusts cardiac muscle activity to mechanical constraints. This constitutes the first in vivo demonstration that a TRPA channel can mediate cardiac mechanotransduction. Furthermore, by establishing a high-throughput system to identify the molecular players involved in mechanotransduction in the cardiovascular system, our study paves the way for understanding the mechanisms underlying a mechanotransduction pathway.  相似文献   

6.
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell–neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.  相似文献   

7.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

8.
A healthy skeleton relies on bone''s ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.  相似文献   

9.
The mechanism by which mechanical forces acting through skeletal muscle cells generate intracellular signaling, known as mechanotransduction, and the details of how gene expression and cell size are regulated by this signaling are poorly understood. Mitogen-activated protein kinases (MAPKs) are known to be involved in mechanically induced signaling in various cell types, including skeletal muscle where MAPK activation has been reported in response to contraction and passive stretch. Therefore, the investigation of MAPK activation in response to mechanical stress in skeletal muscle may yield important information about the mechanotransduction process. With the use of a rat plantaris in situ preparation, a wide range of peak tensions was generated through passive stretch and concentric, isometric, and eccentric contractile protocols, and the resulting phosphorylation of c-Jun NH(2)-terminal kinase (JNK), extracellular regulated kinase (ERK), and p38 MAPKs was assessed. Isoforms of JNK and ERK MAPKs were found to be phosphorylated in a tension-dependent manner, such that eccentric > isometric > concentric > passive stretch. Peak tension was found to be a better predictor of MAPK phosphorylation than time-tension integral or rate of tension development. Differences in maximal response amplitude and sensitivity between JNK and ERK MAPKs suggest different roles for these two kinase families in mechanically induced signaling. A strong linear relationship between p54 JNK phosphorylation and peak tension over a 15-fold range in tension (r(2) = 0.89, n = 32) was observed, supporting the fact that contraction-type differences can be explained in terms of tension and demonstrating that MAPK activation is a quantitative reflection of the magnitude of mechanical stress applied to muscle. Thus the measurement of MAPK activation, as an assay of skeletal muscle mechanotransduction, may help elucidate mechanically induced hypertrophy.  相似文献   

10.
Mechanoreceptor cells of the somatosensory system initiate the perception of touch and pain. Molecules required for mechanosensation have been identified from invertebrate neurons, and recent functional studies indicate that ion channels of the transient receptor potential and degenerin/epithelial Na+ channel families are likely to be transduction channels. The expression of related channels in mammalian somatosensory neurons has fueled the notion that these channels mediate mechanotransduction in vertebrates; however, genetic disruption and heterologous expression have not yet revealed a direct role for any of these candidates in somatosensory mechanotransduction. Thus, new systems are needed to define the function of these ion channels in somatosensation and to pinpoint molecules or signaling pathways that underlie mechanotransduction in vertebrates.  相似文献   

11.
P A Watson 《FASEB journal》1991,5(7):2013-2019
Cells are exposed during their lifetimes to an array of physical forces ranging from those generated by association with other cells and extracellular matrices to the constant forces placed on cells by gravity. Alterations in these forces, either with differentiation and development or changes in activity or behavior, result in modifications in the biochemistry and adaptation in structure and function of cells. Also, a variety of differentiated cells have unique shapes that relate to extremely specialized functions, with structure and function emerging concurrently. These observations lead to the concept that the forces perceived by cells may dictate their shape, and the combined effects of external physical stimuli and internal forces responsible for maintaining cell shape may stimulate alterations in cellular biochemistry. This review examines the state of our knowledge concerning the mechanisms through which physical forces are converted to biochemical signals (mechanotransduction), and speculates on the molecular structures that may be involved in mechanotransduction.  相似文献   

12.
Tissue repair often occurs in organs damaged by an inflammatory response. Inflammatory stimuli induce a rapid and massive release of inflammatory cells including neutrophils from the bone marrow. Recently, many studies suggested that bone marrow cells have the potential to differentiate into a variety of cell types. However, whether inflammatory stimuli induce release of bone marrow-derived progenitor cells (BMPCs), or how much impact the suppression of BMPCs has on the injured organ is not clear. Here we show that LPS, a component of Gram-negative bacterial cell walls, in the lung airways, induces a rapid mobilization of BMPCs into the circulation in mice. BMPCs accumulate within the inflammatory site and differentiate to become endothelial and epithelial cells. Moreover, the suppression of BMPCs by sublethal irradiation before intrapulmonary LPS leads to disruption of tissue structure and emphysema-like changes. Reconstitution of the bone marrow prevents these changes. These data suggest that BMPCs are important and required for lung repair after LPS-induced lung injury.  相似文献   

13.
Cells are exposed to a variety of mechanical cues, including forces from their local environment and physical properties of the tissue. These mechanical cues regulate a vast number of cellular processes, relying on a repertoire of mechanosensors that transduce forces into biochemical pathways through mechanotransduction. Forces can act on different parts of the cell, carry information regarding magnitude and direction, and have distinct temporal profiles. Thus, the specific cellular response to mechanical forces is dependent on the ability of cells to sense and transduce these physical parameters. In this review, we will highlight recent findings that provide insights into the mechanisms by which different mechanosensors decode mechanical cues and how their coordinated response determines the cellular outcomes.  相似文献   

14.
Mechanical stimuli can improve bone function by promoting the proliferation and differentiation of bone cells and osteoblasts. As precursors of osteoblasts, human mesenchymal stem cells (hMSCs) are sensitive to mechanical stimuli. In recent years, fluid shear stress (FSS) has been widely used as a method of mechanical stimulation in bone tissue engineering to induce the osteogenic differentiation of hMSCs. However, the mechanism of this differentiation is not completely clear. Several signaling pathways are involved in the mechanotransduction of hMSCs responding to FSS, such as MAPK, NO/cGMP/PKG and Ca2+ signaling pathway. Here, we briefly review how hMSCs respond to fluid flow stimuli and focus on the signal molecules involved in this mechanotransduction.  相似文献   

15.
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2(+/+) and Pyk2(-/-) primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2(+/+) and Pyk2(-/-) osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK(-/-) osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts.  相似文献   

16.
Various cell types can sense and convert mechanical forces into biochemical signaling events through a process called mechanotransduction, and this process is often highly specific to the types of mechanical forces applied. However, the mechanism(s) that allow for specificity in mechanotransduction remain undefined. Thus, the goal of this study was to gain insight into how cells distinguish among specific types of mechanical information. To accomplish this goal, we determined if skeletal myoblasts can distinguish among differences in strain, strain rate, and strain-time integral (STI). Our results demonstrate that mechanically induced signaling through the c-jun N-terminal kinase 2 [JNK2] is elicited via a mechanism that depends on an interaction between the magnitude of strain and strain rate and is independent of STI. In contrast to JNK2, mechanically induced signaling through the ribosomal S6 kinase [p70(389)] is not strain rate sensitive, but instead involves a magnitude of strain and STI dependent mechanisms. Mathematical modeling also indicated that mechanically induced signaling through JNK2 and p70(389) can be isolated to separate viscous and elastic mechanosensory elements, respectively. Based on these results, we propose that skeletal myoblasts contain multiple mechanosensory elements with distinct biomechanical properties and that these distinct biomechanical properties provide a mechanism for specificity in mechanotransduction.  相似文献   

17.
干细胞作为一种未分化的祖细胞,目前已被广泛应用于开展组织损伤修复、再生以及干细胞特异谱系分化的研究.大量研究表明,干细胞所处的微环境对调控干细胞的生长和分化具有重要作用,多种溶液介质、细胞外基质和信号通路等参与了干细胞命运的调控.尽管已有大量研究证明,溶液介质(如激素和生长因子)在干细胞的生长和分化中发挥重要作用,但近年来越来越多的研究表明,机械力及力学信号转导同样在干细胞自我更新、分化、衰老和凋亡等细胞生理过程中起到重要的作用.本文将对机械应力响应的细胞基础、生物力学及力学信号调控干细胞自我更新和分化,以及生物力学调控干细胞命运可能的作用机制几个方面加以综述.  相似文献   

18.
Mutai H  Heller S 《Cell calcium》2003,33(5-6):471-478
Our senses of touch, hearing, and balance are mediated by mechanosensitive ion channels. In vertebrates, little is known about the molecular composition of these mechanoreceptors, an example of which is the transduction channel of the inner ear's receptor cells, hair cells. Members of the TRP family of ion channels are considered candidates for the vertebrate hair cell's mechanosensitive transduction channel and here we review the evidence for this candidacy. We start by examining the results of genetic screens in invertebrates that identified members of the TRP gene family as core components of mechanoreceptors. In particular, we discuss the Caenorhabditis elegans OSM-9 channel, an invertebrate TRPV channel, and the Drosophila melanogaster TRP channel NOMPC. We then evaluate basic features of TRPV4, a vertebrate member of the TRPV subfamily, which is gated by a variety of physical and chemical stimuli including temperature, osmotic pressure, and ligands. Finally, we compare the characteristics of all discussed mechanoreceptive TRP channels with the biophysical characteristics of hair cell mechanotransduction, speculating about the possible make-up of the elusive inner ear mechanoreceptor.  相似文献   

19.
Many nociceptors detect mechanical cues, but the ion channels responsible for mechanotransduction in these sensory neurons remain obscure. Using in?vivo recordings and genetic dissection, we identified the DEG/ENaC protein, DEG-1, as the major mechanotransduction channel in ASH, a polymodal nociceptor in Caenorhabditis elegans. But DEG-1 is not the only mechanotransduction channel in ASH: loss of deg-1 revealed a minor current whose properties differ from those expected of DEG/ENaC channels. This current was independent of two TRPV channels expressed in ASH. Although loss of these TRPV channels inhibits behavioral responses to noxious stimuli, we found that both mechanoreceptor currents and potentials were essentially wild-type in TRPV mutants. We propose that ASH nociceptors rely on two genetically distinct mechanotransduction channels and that TRPV channels contribute to encoding and transmitting information. Because mammalian and insect nociceptors also coexpress DEG/ENaCs and TRPVs, the cellular functions elaborated here for these ion channels may be conserved.  相似文献   

20.
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号