首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of radiolabeled progesterone and androstenedione was evaluated in endothelial cells from human umbilical cord vein and arteries maintained in culture. The predominant metabolite of progesterone was 5 alpha-pregnane-3,20-dione and that of androstenedione was 5 alpha-androstane-3,17-dione. Thus, the major pathway of progesterone and androstenedione metabolism within these cells is via steroid 5 alpha-reductase. The rate of formation of 5 alpha-pregnane-3,20-dione from progesterone by venous endothelial cells was linear with incubation time up to 4 h and with cell number up to 1.6 X 10(6) cells/ml. The apparent Km of 5 alpha-reductase for progesterone was 0.4 microM; and, the Vmax was 55 pmol 5 alpha-pregnane-3,20-dione formed/mg protein X h. The rate of 5 alpha-androstane-3,17-dione formation from androstenedione also was linear with incubation time up to 4 h. In addition to 5 alpha-androstane-3,17-dione, the metabolism of androstenedione by either venous or arterial cells resulted in the formation of various minor metabolites, including testosterone and 5 alpha-reduced steroids, viz. 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol, and 5 alpha-androstane-3 beta, 17 beta-diol. Estrogens (i.e. estradiol-17 beta and estrone) were not detected as products of androstenedione metabolism. The formation of these metabolites are indicative that the steroid-metabolizing enzymes present in endothelial cells are: 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase, 3 alpha-hydroxysteroid oxidoreductase, and 3 beta-hydroxysteroid oxidoreductase.  相似文献   

2.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

3.
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.  相似文献   

4.
Human lung fibroblasts in culture metabolized [3H]androstenedione to a number of different compounds, including testosterone, 5 alpha-androstanedione, androsterone, 5 alpha-dihydrotestosterone, isoandrosterone, and 5 alpha-androstane-3 alpha,-17 beta-diol. The major products were 5 alpha-androstanedione and testosterone. Estrone, estradiol-17 beta and 5 beta-reduced steroids were not formed. The production rates of testosterone and 5 alpha-androstanedione from [3H]androstenedione by lung fibroblasts were studied both as a function of incubation time and substrate concentration. The rates of formation of testosterone and 5 alpha-androstanedione remained linear with time up to 4 h. The apparent Km of human lung fibroblast 5 alpha-reductase was 1 microM, and that of 17 beta-hydroxysteroid oxidoreductase was 11 microM. The findings of this study suggest that mesenchyma may contribute to the metabolism of androstenedione in human lung tissue.  相似文献   

5.
In view of the uterine action of androgens we have investigated in vitro the metabolism of [4-14C]-testosterone in uterine tissue of ovariectomized rats. After purification of the extracts on Amberlite XAD-2 the metabolites have been isolated by gel. Five metabolites were isolated and identified during these incubation studies: 4-androstene 3,17-dione, 17beta-hydroxy-5alpha-androstan-3-one, 5 alpha-androstane-3alpha17beta-diol, 4-androstene-3 beta, 17beta-diol and 4-androstene-3alpha, 17beta-diol. Furthermore, two polar C19O3-metabolites and one isopolar to 5 alpha-androstane-3, 17-dione have also been detected. The metabolites were characterized by radioactive gas chromatogrphy, and determination of the relative specific activity in the eluates of Sephadex column chromatography. The identification of allylic alcohols was complemented by their oxidation to 4-androstene-3,17-dione. The present data show that activity of 17beta,3alpha- and 3beta-hydroxysteroid-oxidoreductase and 5alpha-ring-reductase are involved in the metabolism of testosterone in vitro in the rat uterus. The very low 5 alpha-reductase activity under the experimental conditions used in this work explains the formation of allylalcohols as the principal metabolites of testosterone in the rat uterus.  相似文献   

6.
The rat ventral prostate requires androgens for normal development, growth, and function. To investigate the relationship between androgen metabolism and its effects in the prostate and to examine differences between the epithelial and stromal cells, we have established a system of primary cell cultures of immature rat ventral prostate cells. Cultures of both cell types after reaching confluency (6-7 days) actively metabolized 3H-labelled testosterone (T), 5 alpha-dihydrotestosterone (5 alpha-DHT), 5 alpha-androstane-3 alpha,17 beta-diol, and 5 alpha-androstane-3 beta,17 beta-diol. The epithelial cells actively reduced T to 5 alpha-DHT and formed significant amounts of 5 alpha-androstane-3,17-dione from T, 5 alpha-DHT, and 5 alpha-androstane-3 alpha,17 beta-diol. All substrates were converted to significant amounts of C19O3 metabolites. The stromal cells also metabolized all substrates, but very little 5 alpha-androstane-3,17-dione was formed. The metabolism studies indicate that both cell types have delta 4-5 alpha-reductase, 3 alpha- and 3 beta-hydroxysteroid oxidoreductase and hydroxylase activities. The epithelial cells have significant 17 beta-hydroxysteroid oxidoreductase activity. The epithelial cells cultures grown in the presence of T have higher acid phosphatase (AP) contents (demonstrated histochemically and by biochemical assay). Tartrate inhibition studies indicate that the epithelial cells grown in the presence of T are making secretory AP. Stromal cell AP is not influenced by T. The results indicate that the cultured cells maintain differentiated prostatic functions: ability to metabolize androgens and, in the case of the epithelial cells, synthesize secretory AP.  相似文献   

7.
Age dependent changes in androgen metabolism in the rat prostate   总被引:1,自引:0,他引:1  
Oxidation and reduction of androstenedione, testosterone, dihydrotestosterone (DHT), 5 alpha-androstan-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol (3 alpha- and 3 beta-A'diol) were measured in homogenates from the ventral prostate (VP), dorsal prostate (DP), lateral prostate (LP), the coagulating gland (CG) and seminal vesicles (SV) in intact rats of different ages from young mature (3-6 months) to senescent rats (20-30 months). Some very old intact rats (30-32 months) were treated with testosterone in order to rule out the effect of this hormone on androgen metabolism. The enzymatic activities for young mature rats were significantly altered by increasing age, both with regard to differences between the various organs as well as differences in cofactor requirement. With increasing age, the specific activity of most enzymes gradually decreased. With testosterone as substrate, 5 alpha-reductase activity was significantly reduced in the old rats in all tissues studied and was undetectable in the oldest animals in the VP and the SV. On the other hand, 5 alpha-reductase could not be recorded in any tissue in any tissue in old rats when androstenedione was the substrate. 3 alpha-Hydroxysteroid oxidoreductase (3 alpha-HSOR) in the VP was the only enzyme which did not decrease in activity by increasing age. In the other lobes this enzyme activity decreased similar to 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR) and the 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR) activity. Administration of testosterone to old rats increased the specific activity of most of the enzymes studied.  相似文献   

8.
J C Coffey  T E Harvey  W L Carr 《Steroids》1979,33(2):223-232
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of male and female rats. The metabolism was predominately reductive. In 15 and 180 min incubations submaxillary tissue converted 4-androstene-3,17-dione chiefly to androsterone. Less testosterone, 17 beta-hydroxy-5 alpha-androstan-3-one, 5 alpha-androstane-3,17-dione, 5 alpha-androstane-3 alpha, 17 beta-diol, and 4-androstene-3 alpha, 17 beta-diol were also identified. Testosterone was converted to the same products plus 4-androstene-3,17-dione. 5 alpha-Androstane-3 alpha, 17 beta-diol was the major testosterone metabolite. Qualitatively the metabolism by male and female submaxillary gland was similar.  相似文献   

9.
Cultures of Sertoli cells isolated from testes of 18-and 36-day-old Long Evans rats were used to investigate their capacity to metabolize testosterone and the effect of FSH on such metabolism. Three different approaches were used: 1) investigation of the metabolism of radiolabeled testosterone under saturating substrate conditions; 2) study of the metabolism of radiolabeled testosterone utilizing trace amounts of high specific activity substrates; 3) the utilization of radioimmunoassay for measurement of estradiol-17 beta. The following steroids were isolated and identified by recrystallization to constant specific acitvity from the control and FSH-treated cultures; testosterone (unconverted substrate), androstenedione, dihydrotestosterone, 3 alpha-hydroxy-5 alpha-androstan-17-one and 5 alpha-androstane-3 alpha, 17 beta-diol. Radioimmunoassay data suggests that the Sertoli cells produce an estradiol-17 beta-like compound from unlabeled testosterone and that this production is stimulated by FSH. However, the radioactive metabolite from all our studies that behaved chromatographically like estradiol--17 beta failed to crystallize to constant specific activity, while in each experiment, authentic radiolabeled estradiol-17 beta added as recovery tracer did. The data demonstrate that : 1) cultures of Sertoli cells from immature rats have 5 alpha-reductase, 3 alpha- and 17 beta-hydroxysteroid oxidoreductase activities; 2) these enzymes may be affected by FSH; 3) based on radiolabeled metabolic techniques, Sertoli cells were unable to biotransform testosterone to estradiol-17 beta even in the presence of FSH.  相似文献   

10.
1. Cell-free homogenates of male and female pyloric caeca, body wall, testis and ovary were incubated with radiolabeled 3H-androstenedione. 2. Pyloric caeca had highest rates of androstenedione conversion. The predominant metabolites in the pyloric caeca were testosterone, 5 alpha-androstane-3 beta, 17 beta-diol and 5 beta-androstane-3 beta, 17 beta-diol. 3. In body wall, testicular and ovarian homogenates, androstenedione was converted primarily to testosterone and also to 5 alpha-androstanedione and epiandrosterone. 4. Qualitative and quantitative differences in androgen metabolism in somatic and germinal tissues may be related to tissue-specific regulation of cellular metabolism.  相似文献   

11.
In male sex accessory organs the active androgen 5 alpha-dihydrotestosterone (DHT) is metabolized to 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) by the reductase activities of 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR; EC 1.1.1.50) and 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR; EC 1.1.1.51). After separation of radiosubstrate and products by HPLC, these enzymes activities in subcellular preparations of rat ventral and dorsolateral prostate were determined from the conversion of [3H]DHT to the radiometabolites 3 alpha-diol and 3 beta-diol and 3 beta-triols (5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol plus 5 alpha-androstane-3 beta, 7 alpha, 17 beta-triol). Whereas both enzymes were found in the dorsolateral prostate, 3 beta-HSOR reductase activity was near the limit of detection in ventral prostate. Unlike the equal distribution of 3 alpha-HSOR reductase between the microsomal and cytosol fractions of the ventral prostate, both 3 alpha- and 3 beta-HSOR reductase activities of the dorsolateral prostate are mainly confined to its cytosol fraction. Km and Vmax of the 3 alpha- and 3 beta-HSOR reductases in dorsolateral prostate cytosol were 1.8 microM, 24.6 pmol.mg-1 min-1 and 25.4 microM, 45.7 pmol.mg-1 min-1, respectively. We surmise from these and earlier studies that 3 beta-HSOR reductase is the rate-limiting prostatic enzyme in the catabolic disposition of intracellular DHT.  相似文献   

12.
The metabolism of [4-14C]progesterone and [4-14C]testosterone by slices of the nasal mucosa from rats was studied. As shown by gas chromatography-mass spectrometry there was a preferential formation of reduced progesterone-metabolites (5 alpha-pregnane-3,20-dione, 3 alpha- and 3 beta-hydroxy-5 alpha-pregnane-20-one, 20 alpha- and 20 beta-hydroxypregn-4-en-3-one, 2 alpha,3 alpha-dihydroxy-5 alpha-pregnane-20-one, 3 alpha,16 alpha-dihydroxy-5 alpha-pregnane-20-one) and reduced testosterone-metabolites (4-androstene-3,17-dione, 5 alpha-dihydrotestosterone, 3 alpha-hydroxy-5 alpha-androstane-17-one, and 5 alpha-androstane-3 alpha, 17 beta-diol, 2 alpha-hydroxy-5 alpha-dihydrotestosterone, 5 alpha-androstane-2 alpha,3 alpha, 17 beta-triol) indicating the presence of 5 alpha-reductase, 3 alpha-, 3 beta-, 17 beta-, 20 alpha- and 20 beta-hydroxysteroid oxidoreductase activities in this tissue. Progesterone-metabolites hydroxylated at positions 2 alpha, 6 alpha, 6 beta, 15 alpha and 16 alpha and testosterone-metabolites hydroxylated at positions 1 beta, 2 alpha, 6 beta, 15 beta and 16 alpha were also identified, indicating the presence of several steroid hydroxylases in the nasal mucosa. Autoradiography of the nasal region of rats injected with [4-14C]progesterone or [4-14C]testosterone showed a selective localization of radioactivity in the mucosa covering the olfactory region of the nasal cavity.  相似文献   

13.
The present experiments were performed in order to analyze whether the administration of estrogens (single injection of 500 micrograms of estradiol benzoate s.c.) to neonatal male rats might modify the weight of the ventral prostate and the epididymis as well as the metabolism of testosterone in these two organs. The metabolism of testosterone was evaluated in vitro using 14C-radiolabelled testosterone as the substrate. The metabolites dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol), 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol), androstenedione, 5 alpha-androstane-3,17-dione (5-A-dione) and 3 alpha-hydroxy-5 alpha-androstane-17-one (androsterone) were quantified. After neonatal estrogen administration animals were killed on days 22 and 90 of age. The following changes were observed: (1) the body weight, the weight of the testes and of the ventral prostate were lower than in controls on both day 22 and 90; (2) the weight of the epididymides was higher than in controls on day 22 and lower on day 90; (3) in the ventral prostate the in vitro formation of DHT was lower and that of the diols was higher than in control tissue on day 22 of age; (4) the in vitro formation of alpha-reduced metabolites of the 17-keto series (5 alpha-A-dione + androsterone) was higher in ventral prostate of treated animals than in that of controls on day 22; (5) in treated animals, no formation of DHT in the caput epididymis was observed at day 22. On the contrary, at the same age the formation of androstenedione was higher than in controls; on day 90 of age the formation of DHT, androstenedione and the 5 alpha-reduced metabolites of the 17-keto series was identical in caput epididymis of the treated animals and of the controls, while the formation of the diols was higher in the treated than in the controls. The data indicate that neonatal estrogenization may induce important changes in testosterone metabolism in the prostates and in the epididymides of the rat.  相似文献   

14.
Oxidation and reduction of 4-androstene-3,17-dione (androstenedione), 17 beta-hydroxy-4-androsten-3-one (testosterone), 17 beta-hydroxy-5 alpha-androstan-3-one (DHT), 5 alpha-androstan-3 alpha,17 beta-diol (3 alpha-A'diol) and 5 alpha-androstane-3 beta,17 beta-diol (3 beta-A'diol) were measured in homogenates from ventral (VP), dorsal (DP) and lateral prostate (LP), the coagulating gland (CG) and seminal vesicle (SV) of the intact sexually mature rat using NAD(H) or NADP(H) as cofactors. The specific activity of the various enzymes varied significantly between the different organs. 5 alpha-Reductase activity was highest in the DP and the CG, and undetectable in the LP. 17 beta-Hydroxysteroid oxidoreductase (17 beta-HSOR) activity was mainly confined to the LP. 3 alpha-Hydroxysteroid oxidoreductase (3 alpha-HSOR) activity was also highest in the LP. In the VP the highest 3 alpha-HSOR activity was recorded using NAD(H) as cofactor. In the other organs, similar or higher enzymatic activities were measured using NADP(H) as added cofactor. 3 beta-Hydroxysteroid oxidoreductase (3 beta-HSOR) activity was high in the LP and low or undetectable in the other tissues. Our results indicate that isoenzymes of 3 alpha-HSOR, 3 beta-HSOR and 17 beta-HSOR are present in the accessory sex organs of the rat.  相似文献   

15.
Follicular fluid was aspirated from preovulatory follicles of women under ovarian stimulation for in vitro fertilization and analyzed by a highly specific technique based on gas chromatography-mass spectrometry associated with stable isotope dilution. 19-Nortestosterone and 19-norandrostenedione were identified and quantified for the first time in human follicular fluid. There was a strong positive correlation between 19-nortestosterone and estradiol-17 beta and between 19-norandrostenedione and estrone concentrations, thus indicating a common cellular origin. The accumulation of 19-norsteroids in follicular fluid confirms that they are weakly active intermediates in the multistep enzymatic conversion of androgen to estrogen. Testosterone concentrations were significantly lower than those obtained by radioimmunoassay; cross-reaction with substantially higher levels of 19-nortestosterone seems to be at the origin of this discrepancy. Androstenedione concentrations were similar to those reported in the literature and it was therefore confirmed that an estradiol/androstenedione concentration ratio above 20 is favourable for oocyte cleavage. Other and some newly estimated androgens are: testosterone sulfate, 5-androstene-3 beta, 17 beta-diol 3-sulfate and disulfate, dihydrotestosterone sulfate, epitestosterone, 19-hydroxyandrostenedione, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, 5 alpha-androstane-3,17-dione and androsterone. Dehydroepiandrosterone sulfate was by far the most abundant androgen in this type of follicles.  相似文献   

16.
Our studies demonstrate that direct stimulation of dihydrotestosterone metabolism by ethanol (2.2 - 65 mM) in rat Leydig cells primarily involves an increase in 5 alpha-androstan-3 beta, 17 beta-diol. Although the enzyme catalyzing this conversion, 5 alpha-androstane-3 beta-hydroxysteroid dehydrogenase, is localized in the microsomal fraction of Leydig cells, ethanol does not increase 5 alpha-androstan-3 beta, 17 beta-diol formation in isolated microsomes, presumably because of the removal of soluble alcohol dehydrogenase activity, which we propose mediates this action. Because 5 alpha-androstan-3 beta, 17 beta-diol is generally considered a weak or inactive androgen, this effect may function to decrease dihydrotestosterone secretion by Leydig cells and/or to reduce the availability of this androgen in responsive tissues.  相似文献   

17.
The present study was undertaken in order to examine the metabolism of androgens by isolated human leukocytes. After incubation, steroids were extracted and purified by high performance liquid chromatography (HPLC); identification and quantification of the steroid products was achieved by gas-liquid-chromatography (GLC), radio-GLC and combined gas chromatography-mass spectrometry (GC-MS) of the trimethylsilyl derivatives (TMS). Incubation in the presence of testosterone led to the formation of 4-ene-androstenedione and 5 alpha-dihydrotestosterone (5 alpha-DHT) while in the presence of 5 alpha-DHT, the products were 5 alpha-androstane-3 alpha, 17 beta-diol (5-Ad) and 5 alpha-androstane-3 beta, 17 beta-diol. The formation of these metabolites was compared in healthy males and females of two age groups. Production of 5 alpha-DHT and 5-Ad was significantly higher in males than in females. In subjects aged 75 years or more, formation of these steroids was decreased by more than half in both sexes, but the sex differences remained. This study confirms the presence in human leukocytes of 17 beta-hydroxysteroid oxydoreductase, 5 alpha-reductase and 3 alpha- and 3 beta-hydroxysteroid oxydoreductase activities.  相似文献   

18.
The effect of aromatizable androgens (testosterone and androstenedione) and naturally occurring 5 alpha-androstane, 3 alpha 17 beta-diol and 5 alpha-androstane, -3 beta, 17 beta-diol on oestradiol secretion by granulosa cells isolated from preovulatory follicles of PMSG-primed immature rats was investigated. The amount of oestradiol secreted by granulosa cells in the absence of exogenous aromatizable androgen in a 4h incubation was negligible. However, the addition of testosterone or androstenedione resulted in concentration dependent increases in oestradiol secretion. The 5 alpha-reduced androgens inhibit oestradiol and oFSH-stimulated oestradiol secretion by the granulosa cells in the presence of exogenous testosterone. The least potent of the androgens tested in causing this effect being the 5 alpha-androstane-3 alpha, 17 beta-diol. This result suggests that the naturally occurring 5 alpha-reduced androgens have a direct effect on androgen-aromatizing enzymes. The effect of these androgens may have an important connotation with respect to the control of the onset of puberty and regulation of ovarian oestradiol secretion within the microenvironment of an ovarian follicle.  相似文献   

19.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), as well as 5 alpha-androstane-3 alpha,17 beta-diol glucuronide (3 alpha-DIOL-G) and unconjugated androstenedione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI) and 17 alpha-hydroxyprogester-one (17OHP) were measured by specific radioimmunoassays (RIA) in 14 women with late-onset 21-hydroxylase deficiency (LOCAH), and in normal women (n = 73). The diagnosis of LOCAH was made on the finding of a (17OHP) response level greater than 30 nmol/l following ACTH stimulation, and/or an elevation of urinary metabolites of 17OHP. Mean values for serum concentrations of all steroids measured and the free androgen index (100 X T nmol/l divided by SHBG nmol/l) were significantly elevated, and SHBG levels depressed in patients with LOCAH. These studies show that in LOCAH, in addition to the unconjugated steroids AD and T, the sulphoconjugated steroids DHEA-S, 5-ADIOL-S and 3 alpha-DIOL-S are increased, as is the glucuronide conjugate 3 alpha-DIOL-G and the index of bioavailable testosterone (FAI), and that mean SHBG levels are depressed. These data suggest that as well as AD, 5-ADIOL-S and DHEA-S may act as pro-hormones for more potent steroids (T and 5 alpha-dihydrotestosterone) in peripheral tissues, while 3 alpha-DIOL-S and 3 alpha-DIOL-G may both reflect peripheral androgen metabolism in patients with LOCAH.  相似文献   

20.
A series of androsterone (ADT) derivatives substituted at position 16 were efficiently synthesized in short reaction sequences; the ether analogues were also synthesized in the case of the methyl and allyl derivatives. The aim of this study was to develop inhibitors of the steroidogenic enzyme type 3 17beta-hydroxysteroid dehydrogenase and then evaluate their ability to inhibit this activity in transfected HEK-293 cells. For each compound we measured the percentage of inhibition of the transformation of 4-androstene-3,17-dione, the natural substrate of this steroidogenic enzyme, into the active androgen testosterone. The synthesized compounds proved to be weak inhibitors of this enzyme, but interestingly, these ADT derivatives do not bind to androgen, estrogen, glucocorticoid, and progestin receptors, suggesting no unsuitable receptor-mediated effects. One exception, 16alpha-(3'-bromopropyl)-5alpha-androstane-3alpha,17beta-diol, the only compound bearing a hydroxy group at position 17beta instead of a ketone, showed a strong binding affinity for the androgen receptor (70% at 1 microM) and also exhibited an antiproliferative activity on Shionogi (AR+) cells (86% at 1 microM), which was comparable to that of hydroxyflutamide, a pure antiandrogen (100% at 1 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号