首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant metallothioneins (MTs) differ from animal MTs by a peculiar sequence organization consisting of two short cysteine-rich terminal domains linked by a long cysteine-devoid spacer. The role of the plant MT domains in the protein structure and functionality is largely unknown. Here, we investigate the separate domain contribution to the in vivo binding of Zn and Cu and to confer metal tolerance to CUP1-null yeast cells of a plant type 2 MT (QsMT). For this purpose, we obtained three recombinant peptides that, respectively, correspond to the single N-terminal (N25) and C-terminal (C18) cysteine-rich domains of QsMT, and a chimera in which the spacer is replaced with a four-glycine bridge (N25-C18). The metal-peptide preparations recovered from Zn- or Cu-enriched cultures were characterized by ESI-MS, ICP-OES and CD and UV-vis spectroscopy and data compared to full length QsMT. Results are consistent with QsMT giving rise to homometallic Zn- or Cu-MT complexes according to a hairpin model in which the two Cys-rich domains interact to form a cluster. In this model the spacer region does not contribute to the metal coordination. However, our data from Zn-QsMT (but not from Cu-QsMT) support a fold of the spacer involving some interaction with the metal core. On the other hand, results from functional complementation assays in endogenous MT-defective yeast cells suggest that the spacer region may play a role in Cu-QsMT stability or subcellular localization. As a whole, our results provide the first insight into the structure/function relationship of plant MTs using the analysis of the separate domain abilities to bind physiological metals.  相似文献   

3.
Addition of cadmium salts to the growth medium of Schizosaccharomyces pombe leads to synthesis of a Cd.gamma-Glu peptide complex and an enhanced generation of sulfide ions. The gamma-Glu peptide complex functions in the detoxification of heavy metal ions. Native Cd.gamma-Glu peptide complexes contain acid-labile sulfide in the metal-thiolate cluster. Two forms of the complex exist differing primarily in their sulfide content. Sulfide concentrations up to 0.2 and 1.2 mol/mol of peptide were observed in native isolates of forms I and II, respectively. Addition of sulfide to the low sulfide form I converted it to a complex similar to form II. Properties of the Cd.gamma-Glu peptide complex were altered by the incorporation of sulfide ions. Sulfide-dependent electronic transitions in the ultraviolet were evident, and the absorbance maximum of the transition was related to the sulfide content and the bound metal ion. High sulfide forms of the Cd and Zn complexes exhibited absorbance peaks at 318 nm and 255 nm, respectively. Incorporation of sulfide into the Cd.gamma-Glu peptide complex imparted greater thermodynamic stability to the complex, an increased Stokes radius, and an enhanced Cd(II) binding capacity. Sulfide generation may be a cellular response in part to enhance the effectiveness of the gamma-Glu peptide system for Cd(II) detoxification.  相似文献   

4.
Metallothioneins (MTs) are metal-chelating peptides that play an active role in zinc homeostasis. The participation of metal ligands other than cysteines and the presence of secondary structure elements in metal-MT complexes are fairly unknown, especially in nonvertebrate MTs. Here, four Zn(II) complexes of invertebrate MTs (mollusc, insect, nematode, and echinoderm) and the Zn(II)-MT complex of the mammalian MT1 isoform, heterologously synthesized in E. coli, were studied by analytic and spectroscopic techniques. By Raman and circular dichroism spectroscopy, new structural informations were obtained. The five analyzed MT isoforms consist largely of beta-turns with the near exclusion of alpha-helical segments. Raman spectroscopy was revealed as an useful tool, providing information about the state of the cysteine sulfur atoms (metal coordinated and oxidized), the participation of histidine in metal coordination, and the molecular environment of tyrosine residues. In all the five Zn(II)-MT studied samples, acid-labile sulfide anions were found as nonproteic ligands, since sulfide-containing and sulfide-devoid species coexisted in the corresponding preparations. Significantly, Raman bands useful as markers of sulfide bridging ligands were identified. Overall, this work illustrates how the combination of analytical and spectroscopic techniques can be a very informative approach for the analysis of in vivo-synthesized metal-MT complexes, providing new data on the metal binding behavior of MTs from the most diverse organisms.  相似文献   

5.
It is now commonly accepted that non-proteic ligands contribute to the structure and stability of metal-metallothionein (M-MT) species, although this contribution may differ substantially depending on the MT and the metal ions involved. Conversely, literature data are unconnected, lacking correlation studies between the contribution of inorganic ligands to the M-MT complexes and the corresponding CD and UV-vis fingerprints. To contribute towards filling this gap, we have analyzed the influence of chloride anions in the Zn- and Cd-MT complexes of mammalian MT1 and MT4 isoforms. Starting from the initial hypothesis that the shoulders appearing at 240nm in the UV-vis difference spectra during the Cd(II) titrations of Zn-MTs would be indicative of chloride participation in these metal-MT complexes, we can now propose that, while their absence definitely rules out these ligands being involved in metal coordination, their presence should not necessarily be attributed to the formation of metal-Cl bonds. Instead, we identified a global blue shift for the UV-vis difference spectral envelope as the most liable indication of chloride participation in the binding sites of the M-MT species. Following this criterion, we determined that chloride anions are bound to the Cd(7)-MT1 and Cd(4)-alphaMT1 complexes but not in the isostoichiometric Zn complexes, nor in the Zn- or Cd-complexes of the homologous MT4 peptides.  相似文献   

6.
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.  相似文献   

7.
Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies. In this work the effects of Cu(II) and Zn(II) ions on heat-induced structural modifications of bovine serum albumin (BSA) were studied, with the aim of delineating the role of these ions in the early stages of proteins aggregation kinetics. A joint application of different techniques was used. The aggregate growth was followed by dynamic light scattering measurements, whereas the conformational changes occurring in the protein structure were monitored by Raman and IR spectroscopy. Both in absence and in presence of metal ions, heating treatment gave rise to β-structures to the detriment of α-helix conformation of BSA. The temperature of protein unfolding was not sensitively affected by the presence of Zn(II) or Cu(II) ions; on the contrary, only Zn(II) ions slightly promoted the heat-induced aggregation of the protein, since bigger aggregates were formed in their presence. The different efficacy of the Cu(II) and Zn(II) ions in promoting the BSA aggregation were highlighted by Raman measurements, assessing the role of His residues in metal binding. A distinct polypeptide folding of the two metal-BSA systems takes place, since the predominant mode of metal binding depends on metal. In particular, in Zn-BSA the metal coordination involves the imidazole Nτ atom of His which can promote inter-molecular cross-linking.  相似文献   

8.
9.
Liu J  Stemmler AJ  Fatima J  Mitra B 《Biochemistry》2005,44(13):5159-5167
ZntA from Escherichia coli, a P1-type ATPase, specifically transports Pb(II), Zn(II), and Cd(II). Most P1-type ATPases have an N-terminal domain that contains one or more copies of the conserved metal-binding motif, GXXCXXC. In ZntA, the N-terminal domain has approximately 120 residues with a single GXXCXXC motif, as well as four additional cysteine residues as part of the CCCDGAC motif. The metal-binding specificity and affinity of this domain in ZntA was investigated. Isolated proteins, N1-ZntA and N2-ZntA, containing residues 1-111 and 47-111 of ZntA, respectively, were characterized. N1-ZntA has both the CCCDGAC and GXXCXXC motifs, while N2-ZntA has only the GXXCXXC motif. ICP-MS measurements showed that N1-ZntA can bind both divalent metal ions such as Cd(II), Pb(II), and Zn(II) and monovalent metal ions such as Ag(I), with a stoichiometry of 1. N2-ZntA can bind Zn(II) and Cd(II) with a stoichiometry of 1 but not Pb(II). The affinity of N1-ZntA for Zn(II), Pb(II), and Cd(II) was measured by competition titration with metallochromic indicators. Association constants of approximately 10(8) M(-)(1) were obtained for Zn(II), Pb(II), and Cd(II) binding to N1-ZntA. To investigate whether the CCCDGAC sequence has an important role in binding specifically Pb(II), a mutant of ZntA, which lacked the first 46 residues, was constructed. This mutant, Delta46-ZntA, had the same activity as wtZntA with respect to Cd(II) and Zn(II). However, its activity with Pb(II) was similar to the mutant DeltaN-ZntA, which lacks the entire N-terminal domain (Mitra, B., and Sharma, R. (2001) Biochemistry 40, 7694-7699). Thus, binding of Pb(II) appears to involve different ligands, and possibly geometry, compared to Cd(II) and Zn(II).  相似文献   

10.
Expression of plant metallothionein genes has been reported in a variety of senescing tissues, such as leaves and stems, ripening fruits, and wounded tissues, and has been proposed to function in both metal chaperoning and scavenging of reactive oxygen species. In this work, it is shown that MT is also associated with suberization, after identifying a gene actively transcribed in Quercus suber cork cells as a novel MT. This cDNA, isolated from a phellem cDNA library, encodes a MT that belongs to type 2 plant MTs (QsMT). Expression of the QsMT cDNA in E. coli grown in media supplemented with Zn, Cd, or Cu has yielded recombinant QsMT. Characterization of the respective metal aggregates agrees well with a copper-related biological role, consistent with the capacity of QsMT to restore copper tolerance to a MT-deficient, copper-sensitive yeast mutant. Furthermore, in situ hybridization results demonstrate that RNA expression of QsMT is mainly observed under conditions related to oxidative stress, either endogenous, as found in cork or in actively proliferating tissues, or exogenous, for example, in response to H(2)O(2) or paraquat treatments. The putative role of QsMT in oxidative stress, both as a free radical scavenger via its sulphydryl groups or as a copper chelator is discussed.  相似文献   

11.
The water hyacinth (Eichchornia crassipes) has been successfully utilized for the removal of Zn(II) and Cd(II) as well as their admixture from samples of aqueous solutions. The growth of the plant after 16 days of exposure to the metal ions showed an increasing trend up to 2.5 ppm of Cd(II) and 6.0 ppm of Zn(II) concentrations, however, the growth became nondetectable or inhibited above these concentrations. The overall metal uptake by the plant was dependent upon the concentration of the metal and the duration of the exposure time. The metal uptake from a mixture of Cd(II) and Zn(II) was reflected by a rate constant quite different from those solutions containing only one metal ion. An analysis of metal in roots and tops of the plants showed that more Zn(II) was accumulated in the root when compared to Cd(II). However, the accumulation factor for the tops and the roots for Cd(II) and Zn(II) was higher than those obtained admixture of Zn(II) and Cd(II). The rate of metal mobility in the root was slower than that in the top of the plant for Zn(II) and Cd(II). A water hyacinth based system can be used to remove Cd(II) and Zn(II) from water/wastewater.  相似文献   

12.
113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper, zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits in the dimeric enzyme were found to have identical coordination properties towards 113Cd(II) at the Zn site when no copper is coordinated at the Cu site, and when Cu(I) or Cd(II) is coordinated, were found to be very small indicating that 113Cd(II) must be bound to the same number and type of ligands in both cases. Furthermore, the spectra show that the rate of exchange of protein-bound 113Cd(II) and free 113Cd2+ is slow on the NMR time scale also at the Cu site. The present study suggests an explanation for the discrepancy in the literature regarding 113Cd-NMR investigations of bovine superoxide dismutase.  相似文献   

13.
14.
15.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Cooperative cluster formation in metallothionein   总被引:1,自引:0,他引:1  
An ion-exchange chromatography procedure was used to resolve apometallothionein from the metallo- form in a study of metal-thiolate cluster formation. Chromatography of metallothionein reconstituted with Cd(II), Zn(II), or Cu(I) at neutral pH on carboxymethyl-cellulose led to removal of apoprotein from a solution without effect on recovery of the metalloprotein. Analysis of the effluent revealed apparent cooperative binding of these metal ions to the protein. Addition of 1-4 mol eq Cd(II) ions led to the recovery of metallothionein with around 4 mol eq Cd bound. The yield of this form increased with increasing starting metal ion equivalency. These results were obtained with two different ion-exchange resins. The cooperativity of binding was not total, but was initially confined to the carboxyl-terminal alpha domain. The results of metal and protein yields are inconsistent with random, noninteractive binding. Similar data were obtained with Zn(II) and Cu(I) ions although Cu(I) exhibited initial cooperative binding within the amino-terminal beta domain with over 5 mol eq Cu(I) bound.  相似文献   

17.
The reaction of L-ascorbic acid with the zinc group and manganese ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type M (L-ascorbate)2.2H2O, where M = Zn(II), Cd(II) and Mn(II) were isolated and characterized by 13C NMR and Fourier Transform infrared (FT-IR) spectroscopy. Spectroscopic evidence showed that in aqueous solution, the bindings of the Zn(II) and Mn(II) ions are through the ascorbate anion O-3 and O(2)-H groups (chelation), while the Cd(II) ion binding is via the O-3 atom only. In the solid state, the binding of these metal ions would be through two acid anions via O-3, O-2 of the first and O-1, O-3 of the second anion as well as to two H2O molecules, resulting in a six-coordinated metal ion. The Hg(II) ion interaction leads to the oxidation of the ascorbic acid in aqueous solution.  相似文献   

18.
Liu T  Golden JW  Giedroc DP 《Biochemistry》2005,44(24):8673-8683
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).  相似文献   

19.
β-Lactamase II has two metal-binding sites. The electronic spectra of Cd(II)- and Co(II)-substituted β-lactamase II have been investigated. It is suggested that a thiol ligand is involved in metal binding at the first site. The stoichiometric dissociation constants for Co(II) binding to β-lactamase II were estimated to be 0.13 and 2.66 mM (pH 6.0, 4°C, 1 M NaCl) by equilibrium dialysis. Competition between Zn(II) and Co(II) for the first metal binding site suggests a value of 0.7 μM (pH 6.0, 30°C, 1 M NaCl) for the dissociation constant o Zn(II).The electronic spectra of the Co(II) enzyme lead to the suggestion that the coordination geometries around the metal ions in the first and second sites are related to those of a distorted tetrahedron and octahedron, respectively.  相似文献   

20.
Recombinant (E. coli ) synthesis of mammalian MT1 and MT4 domains as separate peptides in Zn(II) and Cd(II) enriched growth media has rendered metal complexes containing sulfide anions as additional ligands. The Cd preparations show higher sulfide content than the Zn preparations. Also, the betaMT1 and betaMT4 fragments exhibit higher sulfide/peptide ratios than the respective alpha fragments. Titration of Zn3-betaMT1 with Cd(II) followed by addition of several sodium sulfide equivalents shows that the Cd(II)-betaMT1 species can incorporate sulfide ligands in vitro, with a concomitant evolution of their UV-vis and CD fingerprints to those characteristic of the Cd-S2- chromophores. Current results have also provided full understanding of previous data collected by this group in the characterization of the Cd-betaMT1 preparations obtained from large-scale fermentor synthesis by allowing identification of at least 2S2- ligands per Cd-betaMT1 species. Furthermore, the results here presented have revealed that synthesis of betaMT4 in Cd-supplemented cultures yielded Cd,S(2-)-containing clusters instead of the proposed heterometallic Zn,Cd-betaMT4 complexes. Finally, a global evaluation of our results suggests that the higher the Cu-thionein character of a MT peptide, the higher is its tendency to harbor nonproteic ligands (i.e., sulfide anions) when building divalent metal clusters, especially Cd-MT complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号