首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial infarction is a manifestation of necrotic cell death as a result of opening of the mitochondrial permeability transition (MPT). Receptor-mediated cardioprotection is triggered by an intracellular signaling pathway that includes phosphatidylinositol 3-kinase, endothelial nitric-oxide synthase, guanylyl cyclase, protein kinase G (PKG), and the mitochondrial K(ATP) channel (mitoK(ATP)). In this study, we explored the pathway that links mitoK(ATP) with the MPT. We confirmed previous findings that diazoxide and activators of PKG or protein kinase C (PKC) inhibited MPT opening. We extended these results and showed that other K(+) channel openers as well as the K(+) ionophore valinomycin also inhibited MPT opening and that this inhibition required reactive oxygen species. By using isoform-specific peptides, we found that the effects of K(ATP) channel openers, PKG, or valinomycin were mediated by a PKCepsilon. Activation of PKCepsilon by phorbol 12-myristate 13-acetate or H(2)O(2) resulted in mitoK(ATP)-independent inhibition of MPT opening, whereas activation of PKCepsilon by PKG or the specific PKCepsilon agonist psiepsilon receptor for activated C kinase caused mitoK(ATP)-dependent inhibition of MPT opening. Exogenous H(2)O(2) inhibited MPT, because of its activation of PKCepsilon, with an IC(50) of 0.4 (+/-0.1) microm. On the basis of these results, we propose that two different PKCepsilon pools regulate this signaling pathway, one in association with mitoK(ATP) and the other in association with MPT.  相似文献   

2.
3.
Opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoK(ATP)-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitochondria, using fluorescent probes that are sensitive to hydrogen peroxide. When mitochondria were treated with the K(ATP) channel openers diazoxide or cromakalim, their ROS production increased by 40-50%, and this effect was blocked by 5-hydroxydecanoate. ROS production exhibited a biphasic dependence on valinomycin concentration, with peak production occurring at valinomycin concentrations that catalyze about the same K(+) influx as K(ATP) channel openers. ROS production decreased with higher concentrations of valinomycin and with all concentrations of a classical protonophoretic uncoupler. Our studies show that the increase in ROS is due specifically to K(+) influx into the matrix and is mediated by the attendant matrix alkalinization. Myxothiazol stimulated mitoK(ATP)-dependent ROS production, whereas rotenone had no effect. This indicates that the superoxide originates in complex I (NADH:ubiquinone oxidoreductase) of the electron transport chain.  相似文献   

4.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes.  相似文献   

5.
Mitochondrial potassium transport: the K(+) cycle   总被引:4,自引:0,他引:4  
  相似文献   

6.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

7.
Protection from a prolyl hydroxylase domain-containing enzyme (PHD) inhibitor, desferoxamine (DFO), was recently reported to be dependent on production of reactive oxygen species (ROS). Ischemic preconditioning triggers the protected state by stimulating nitric oxide (NO) production to open mitochondrial ATP-sensitive K+ (mitoK(ATP)) channels, generating ROS required for protection. We tested whether DFO and a second PHD inhibitor, ethyl-3,4-dihydroxybenzoate (EDHB), might have similar mechanisms. EDHB and DFO increased ROS generation by 50-75% (P < 0.001) in isolated rabbit cardiomyocytes. This increase after EDHB exposure was blocked by N(omega)-nitro-L-arginine methyl ester (L-NAME), an NO synthase (NOS) inhibitor; ODQ, a guanylyl cyclase antagonist; and Rp-8-bromoguanosine-3',5'-cyclic monophosphorothioate Rp isomer, a PKG blocker, thus implicating the NO pathway in EDHB's signaling. Glibenclamide, a nonselective K(ATP) channel blocker, or 5-hydroxydecanoate, a selective mitoK(ATP) channel antagonist, also prevented EDHB's ROS production, as did blockade of mitochondrial electron transport with myxothiazol. NOS is activated by Akt. However, neither wortmannin, an inhibitor of phosphatidylinositol-3-kinase, nor Akt inhibitor blocked EDHB-induced ROS generation, indicating that EDHB initiates signaling downstream of Akt. DFO also increased ROS production, and this effect was blocked by ODQ, 5-hydroxydecanoate, and N-(2-mercaptopropionyl)glycine, an ROS scavenger. DFO increased cardiomyocyte production of nitrite, a metabolite of NO, and this effect was blocked by an inhibitor of NOS. DFO also spared ischemic myocardium in intact hearts. This infarct-sparing effect was blocked by ODQ, L-NAME, and N-(2-mercaptopropionyl)glycine. Hence, DFO and EDHB stimulate NO-dependent activation of PKG to open mitoK(ATP) channels and produce ROS, which act as second messengers to trigger entrance into the preconditioned state.  相似文献   

8.
Ljubkovic M  Shi Y  Cheng Q  Bosnjak Z  Jiang MT 《FEBS letters》2007,581(22):4255-4259
Previous observations on the activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) by nitric oxide (NO) in myocardial preconditioning were based on indirect evidence. In this study, we have investigated the direct effect of NO on the rat cardiac mitoK(ATP) after reconstitution of the inner mitochondrial membranes into lipid bilayers. We found that the mitoK(ATP) was activated by exogenous NO donor S-nitroso-N-acetyl penicillamine or PAPA NONOate. This activation was inhibited by mitoK(ATP) blockers 5-hydroxydecanoate or glibenclamide. Our observations confirm that NO can directly activate the cardiac mitoK(ATP), which may underlie its contribution to myocardial preconditioning.  相似文献   

9.
The ATP-sensitive potassium channel from the inner mitochondrial membrane (mitoK(ATP)) is a highly selective conductor of K(+) ions. When isolated in the presence of nonionic detergent and reconstituted in liposomes, mitoK(ATP) is inhibited with high affinity by ATP (K((1/2)) = 20-30 microM). We have suggested that holo-mitoK(ATP) is a heteromultimer consisting of an inwardly rectifying K(+) channel (mitoKIR) and a sulfonylurea receptor (Grover, G. J., and Garlid, K. D. (2000) J. Mol. Cell. Cardiol. 32, 677-695). Here, we show that a 55-kDa protein isolated by ethanol extraction and reconstituted in bilayer lipid membranes and liposomes is the mitoKIR. This protein, which lacks the sulfonylurea receptor subunit, is inhibited with low affinity by ATP, with K(1/2) approximately 550 microM. ATP inhibition of both mitoKIR and holo-mitoK(ATP) is reversed by UDP (K((1/2))1/2 = 10-15 microM). Holo-mitoK(ATP) is and diazoxide, and the opened by cromakalim flux through the open channel is inhibited by glibenclamide and 5-hydroxydecanoate. None of these agents has any effect upon mitoKIR. We have identified two compounds that act specifically on mitoKIR. p-diethylaminoethylbenzoate reverses inhibition of mitoKIR by ATP and ADP at micromolar concentrations and also opens mitoK(ATP) in isolated mitochondria. Tetraphenylphosphonium inhibits K(+) flux through both mitoKIR and mitoK(ATP) with the same apparent affinity. These findings support the hypothesis that the 55-kDa mitoKIR is the channel component of mitoK(ATP).  相似文献   

10.
Pharmacological mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening protects against ischemic damage and mimics ischemic preconditioning. However, physiological and pathological signaling events that open this channel are still not fully understood. We found that catalase, which removes H(2)O(2), is capable of reversing the beneficial effects of ischemic preconditioning but not of mitoK(ATP) agonist diazoxide. On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting that this compound may present effects other than scavenging of reactive oxygen species. Indeed, 2-mercaptopropionylglycine and a second thiol-reducing agent, dithiothreitol, impair diazoxide-mediated activation of mitoK(ATP) in isolated heart mitochondria. This demonstrates that mitoK(ATP) activity is regulated by thiol redox status. Furthermore, stimulating the generation of endogenous mitochondrial reactive oxygen species or treating samples with H(2)O(2) strongly enhances mitoK(ATP) activity, in a manner probably dependent on redox sensors located in the channel's sulfonylurea receptor. We also demonstrate that mitoK(ATP) channel activity effectively prevents mitochondrial reactive oxygen release. Collectively, our results suggest that mitoK(ATP) acts as a reactive oxygen sensor that decreases mitochondrial free radical generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions such as ischemia/reperfusion.  相似文献   

11.
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.  相似文献   

12.
Mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening was shown previously to slightly increase respiration and decrease the membrane potential by stimulating K(+) cycling across the inner membrane. Here we show that mitoK(ATP) opening reduces reactive oxygen species generation in heart, liver and brain mitochondria. Decreased H(2)O(2) release is observed when mitoK(ATP) is active both with respiration stimulated by oxidative phosphorylation and when ATP synthesis is inhibited. In addition, decreased H(2)O(2) release is observed when mitochondrial Delta pH is enhanced, an effect expected to occur when mitoK(ATP) is open. We conclude that mitoK(ATP) is an effective pathway to trigger mild uncoupling, preventing reactive oxygen species release.  相似文献   

13.
Genistein, a natural isoflavone present in soybeans, is a potent agent in the prophylaxis and treatment of cancer. Addition of genistein to isolated rat liver mitochondria (RLM) induces swelling, loss of membrane potential and release of accumulated Ca2+. These changes are Ca2+-dependent and are prevented by cyclosporin A (CsA) and bongkrekic acid (BKA), two classical inhibitors of the mitochondrial permeability transition (MPT). Induction of the MPT by genistein is accompanied by oxidation of thiol groups and pyridine nucleotides. The reducing agent dithioerythritol and the alkylating agent N-ethylmaleimide (NEM) completely prevent the opening of the transition pore, thereby emphasizing that the effect of the isoflavone correlates with the mitochondrial redox state. Further analyses showed that genistein induces the MPT by the generation of reactive oxygen species (ROS) due to its interaction with the respiratory chain at the level of mitochondrial complex III.  相似文献   

14.
We showed recently that mitochondrial ATP-dependent K(+) channel (mitoK(ATP)) opening is required for the inotropic response to ouabain. Because mitoK(ATP) opening is also required for most forms of cardioprotection, we investigated whether exposure to ouabain was cardioprotective. We also began to map the signaling pathways linking ouabain binding to Na(+)-K(+)-ATPase with the opening of mitoK(ATP). In Langendorff-perfused rat hearts, 10-80 microM ouabain given before the onset of ischemia resulted in cardioprotection against ischemia-reperfusion injury, as documented by an improved recovery of contractile function and a reduction of infarct size. In skinned cardiac fibers, a ouabain-induced protection of mitochondrial outer membrane integrity, adenine nucleotide compartmentation, and energy transfer efficiency was evidenced by a decreased release of cytochrome c and preserved half-saturation constant of respiration for ADP and adenine nucleotide translocase-mitochondrial creatine kinase coupling, respectively. Ouabain-induced positive inotropy was dose dependent over the range studied, whereas ouabain-induced cardioprotection was maximal at the lowest dose tested. Compared with bradykinin (BK)-induced preconditioning, ouabain was equally efficient. However, the two ligands clearly diverge in the intracellular steps leading to mitoK(ATP) opening from their respective receptors. Thus BK-induced cardioprotection was blocked by inhibitors of cGMP-dependent protein kinase (PKG) or guanylyl cyclase (GC), whereas ouabain-induced protection was not blocked by either agent. Interestingly, however, ouabain-induced inotropy appears to require PKG and GC. Thus 5-hydroxydecanoate (a selective mitoK(ATP) inhibitor), N-(2-mercaptopropionyl)glycine (MPG; a reactive oxygen species scavenger), ODQ (a GC inhibitor), PP2 (a src kinase inhibitor), and KT-5823 (a PKG inhibitor) abolished preconditioning by BK and blocked the inotropic response to ouabain. However, only PP2, 5-HD, and MPG blocked ouabain-induced cardioprotection.  相似文献   

15.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

16.
The mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) has been assigned multiple roles in cell physiology and in cardioprotection. Each of these roles must arise from basic consequences of mitoK(ATP) opening that should be observable at the level of the mitochondrion. MitoK(ATP) opening has been proposed to have three direct effects on mitochondrial physiology: an increase in steady-state matrix volume, respiratory stimulation (uncoupling), and matrix alkalinization. Here, we examine the evidence for these hypotheses through experiments on isolated rat heart mitochondria. Using perturbation techniques, we show that matrix volume is the consequence of a steady-state balance between K+ influx, caused either by mitoK(ATP) opening or valinomycin, and K+ efflux caused by the mitochondrial K+/H+ antiporter. We show that increasing K+ influx with valinomycin uncouples respiration like a classical uncoupler with the important difference that uncoupling via K+ cycling soon causes rupture of the outer mitochondrial membrane and release of cytochrome c. By loading the potassium binding fluorescent indicator into the matrix, we show directly that K+ influx is increased by diazoxide and inhibited by ATP and 5-HD. By loading the fluorescent probe BCECF into the matrix, we show directly that increasing K+ influx with either valinomycin or diazoxide causes matrix alkalinization. Finally, by comparing the effects of mitoK(ATP) openers and blockers with those of valinomycin, we show that four independent assays of mitoK(ATP) activity yield quantitatively identical results for mitoK(ATP)-mediated K+ transport. These results provide decisive support for the hypothesis that mitochondria contain an ATP-sensitive K+ channel and establish the physiological consequences of mitoK(ATP) opening for mitochondria.  相似文献   

17.
Protection of heart against ischemia-reperfusion injury by ischemic preconditioning and K(ATP) channel openers is known to involve the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Brain is also protected by ischemic preconditioning and K(ATP) channel openers, and it has been suggested that mitoK(ATP) may also play a key role in brain protection. However, it is not known whether mitoK(ATP) exists in brain mitochondria, and, if so, whether its properties are similar to or different from those of heart mitoK(ATP). We report partial purification and reconstitution of a new mitoK(ATP) from rat brain mitochondria. We measured K(+) flux in proteoliposomes and found that brain mitoK(ATP) is regulated by the same ligands as those that regulate mitoK(ATP) from heart and liver. We also examined the effects of opening and closing mitoK(ATP) on brain mitochondrial respiration, and we estimated the amount of mitoK(ATP) by means of green fluorescence probe BODIPY-FL-glyburide labeling of the sulfonylurea receptor of mitoK(ATP) from brain and liver. Three independent methods indicate that brain mitochondria contain six to seven times more mitoK(ATP) per milligram of mitochondrial protein than liver or heart.  相似文献   

18.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

19.
Nimesulide, a widely used nonsteroidal anti-inflammatory drug containing a nitroaromatic moiety, has been associated with rare but serious hepatic adverse effects. The mechanisms underlying this idiosyncratic hepatotoxicity are unknown; however, both mitochondrial injury and oxidative stress have been implicated in contributing to liver injury in susceptible patients. The aim of this study was, first, to explore whether membrane permeability transition (MPT) could contribute to nimesulide's mitochondrial toxicity and, second, whether metabolism-derived reactive oxygen species (ROS) were responsible for MPT. We found that isolated mouse liver mitochondria readily underwent Ca2+-dependent, cyclosporin A-sensitive MPT upon exposure to nimesulide (at >or=3 microM). Net increases in mitochondrial superoxide anion levels, determined with the fluorescent probe dihydroethidium, were induced by nimesulide only in the presence of Ca2+ and were cyclosporin A-sensitive, indicating that superoxide production was a consequence, rather than the cause, of MPT. In addition, nimesulide caused a rapid dissipation of the inner mitochondrial transmembrane potential (at >or=3 microM), followed by a concentration-dependent decrease in ATP biosynthesis. Because nimesulide, unlike the related nitroaromatic drug nilutamide, did not produce any detectable ROS during incubation with mouse hepatic microsomes, we conclude that mitochondrial uncoupling causes MPT and that ROS production is a secondary effect.  相似文献   

20.
Reperfusion of ischemic tissue can precipitate cell death. Much of this cell killing is related to the return of physiological pH after the tissue acidosis of ischemia. The mitochondrial permeability transition (MPT) is a key mechanism contributing to this pH-dependent reperfusion injury in hepatocytes, myocytes, and other cell types. When ATP depletion occurs after the MPT, necrotic cell death ensues. If ATP levels are maintained, at least in part, the MPT initiates apoptosis caused by mitochondrial swelling and release of cytochrome c and other proapoptotic factors. Cyclosporin A and acidotic pH inhibit opening of permeability transition pores and protect cells against oxidative stress and ischemia/reperfusion injury, whereas Ca2+, mitochondrial reactive oxygen species, and pH above 7 promote mitochondrial inner membrane permeabilization. Reperfusion with nitric oxide (NO) donors also blocks the MPT via a guanylyl cyclase and protein kinase G-dependent signaling pathway, which in turn prevents reperfusion-induced cell killing. In isolated mitochondria, a combination of cGMP, cytosolic extract, and ATP blocks the Ca2+-induced MPT, an effect that is reversed by protein kinase G inhibition. Thus, NO prevents pH-dependent cell killing after ischemia/reperfusion by a guanylyl cyclase/cGMP/protein kinase G signaling cascade that blocks the MPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号