首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite reductase was purified between 760- and 1300-fold from vegetable marrow (Cucurbita pepo L.) and residual hydroxylamine reductase activity was low or negligible by comparison. With ferredoxin as electron donor, nitrite loss and ammonia formation at pH7.5 were stoicheiometrically equivalent. Crude nitrite reductase preparations showed negligible activity with NADPH as electron donor maintained in the reduced state by glucose 6-phosphate, whereas by comparison, activity was high when either ferredoxin or benzyl viologen were also present and reduced by the NADPH-glucose 6-phosphate system, whereas FMNH(2) produced variable and relatively low activity under the same conditions. At pH values below 7, non-enzymic reactions occurred between reduced benzyl viologen and nitrite, and intermediate reduction products were inferred to be produced instead of ammonia. Activity with ferredoxin (0.1mm), reduced by chloroplast grana in the light, was 25 times that produced with ferredoxin (40mum) reduced with NADPH and glucose 6-phosphate. For an approximate molecular weight 61000-63000 derived by chromatography on Sephadex G-100 and G-200, and a specific activity of 46mumol of nitrite reduced/min per mg of protein with light and chloroplast grana, a minimum turnover number of 3x10(3)mol of nitrite reduced/min per mol of enzyme was found. Two hydroxylamine reductases were separated on Sephadex gels. One (HR1) was initially associated with nitrite reductase during gel filtration but disappeared during later fractionation. This HR1 fraction showed nearly comparable activity with reduced benzyl viologen, ferredoxin or FMNH(2). The other (HR2), of molecular weight approx. 35000, reacted with reduced benzyl viologen but showed negligible activity with ferredoxin or NADPH. Activity with FMNH(2) was associated with an irregular trailing boundary during gel filtration, with much diminished activity in the HR2 region. Activity with NADPH was about 30% of that with FMNH(2), reduced benzyl viologen or ferredoxin and was considered to reside in fraction HR1. Hydroxylamine yielded ammonia under all assay conditions. No activity with hyponitrite or sulphite was observed with reduced benzyl viologen as electron donor in either the nitrite reductase or the hydroxylamine reductase systems, but pyruvic oxime produced about 4% of the activity of hydroxylamine.  相似文献   

2.
Ferredoxin-dependent nitrite reductase of spinach has been further characterized and the relationship between this enzyme and methyl viologen-dependent nitrite reductase studied.

Purified ferredoxin nitrite reductase, having a molecular weight of 86,000, showed 2.5 times higher ferredoxin-dependent activity than methyl viologen-linked activity. Besides 4 mol of labile sulfide the enzyme contained about 2 mol of siroheme per mol. When dithionite, methyl viologen and nitrite were added, ESR signals of a heme nitrosyl complex at g = 2.14, 2.07 and 2.02 were observed. Moreover, hyperfine splitting of the signal due to 14N nuclear spin was also observed at 2.033, 2.023 and 2.013. The sole addition of hydroxylamine to the ferric enzyme also caused the same but much less intense signals with the hyperfine splitting.

On treatment of the ferredoxin nitrite reductase (native enzyme) with DEAE-Sephadex A-50 chromatography, a modified nitrite reductase having a molecular weight of 61,000 and a protein fraction having an apparent molecular weight of 24,000 were separated. The modified enzyme contained about one mol of siroheme and 4 mol of labile sulfide per mol and showed essentially the same heme ESR signals as the native enzyme. Contrary to the native enzyme, this modified enzyme accepted electrons more efficiently from methyl viologen than ferredoxin and the reduction of nitrite to ammonia catalyzed by the modified enzyme was not stoichiometric. The observed nitrite to ammonia ratio was 1 to less than 0.6. Cyanide at concentrations between 0.02 to 0.2 mm inhibited the activity of the native enzyme almost completely but the modified enzyme was inhibited only partially.

From the results obtained, it is suggested that the native ferredoxin-linked nitrite reductase consists of two components (or subunits) and removal of the light component results in formation of a modified enzyme with increased relative affinity to methyl viologen.  相似文献   

3.
Nitrite reductase (EC 1.6.6.4) has been purified 730-fold from spinach leaves. The enzyme catalyzes the reduction of nitrite to ammonia, with the use of reduced form of methyl viologen and ferredoxin. A stoichiometry of one molecule of nitrite reduced per molecule of ammonia formed has been found. KCN at 2.5×10-4 m inhibited nitrite reductase activity almost completely. Purified enzyme was almost homogeneous by disk electrophoresis with polyacrylamide gel. The molecular weight of the enzyme was estimated to be 61,000 from gel filtration. Nitrite reductase, in the oxidized form, has absorption maxima at 276, 388 and 573 mμ. Both methyl viologen and ferredoxin linked nitrite reductase activities of the enzyme were inactivated on exposure to low ionic strength.  相似文献   

4.
Nitrite reductases found in plants, algae, and cyanobacteria catalyze the six-electron reduction of nitrite to ammonia with reduced ferredoxin serving as the electron donor. They contain one siroheme and one [4Fe-4S] cluster, acting as separate one-electron carriers. Nitrite is thought to bind to the siroheme and to remain bound until its complete reduction to ammonia. In the present work the enzyme catalytic cycle, with ferredoxin reduced by photosystem 1 as an electron donor, has been studied by EPR and laser flash absorption spectroscopy. Substrate depletion during enzyme turnover, driven by a series of laser flashes, has been demonstrated. A complex of ferrous siroheme with NO, formed by two-electron reduction of the enzyme complex with nitrite, has been shown to be an intermediate in the enzyme catalytic cycle. The same complex can be formed by incubation of free oxidized nitrite reductase with an excess of nitrite and ascorbate. Hydroxylamine, another putative intermediate in the reduction of nitrite catalyzed by nitrite reductase, was found to react with oxidized nitrite reductase to produce the same ferrous siroheme-NO complex, with a characteristic formation time of about 13 min. The rate-limiting step for this reaction is probably hydroxylamine binding to the enzyme, with the conversion of hydroxylamine to NO at the enzyme active site likely being much faster.  相似文献   

5.
1. NADPH-dependent nitrite reductase from the leaves of higher plants was purified at least 70-fold and separated into two enzyme fractions. The first enzyme, a diaphorase with ferredoxin-NADP-reductase activity, is required only to transfer electrons from NADPH to a suitable electron acceptor, which then donates electrons to nitrite reductase proper. 2. Purified nitrite reductase accepted electrons from ferredoxin (the natural donor) or from reduced dyes. Ferredoxin was reduced by illuminated chloroplasts or dithionite, or by NADPH when diaphorase was present. The purified enzyme did not accept electrons directly from NADPH. 3. Ferredoxins purified from maize, spinach or Clostridium were interchangeable in the nitrite-reductase system. 4. Nitrite reductase had K(m) 0.15mm for nitrite. The pH optimum varied with plant and method of assay. The preparation had low sulphite-reductase activity. Ammonia was the product of nitrite reduction. 5. For some plants, the assay of crude preparations with NADPH was limited by diaphorase and the addition of diaphorase gave a better estimate of nitrite-reductase activity. A simple method of assay is described that uses dithionite with benzyl viologen as electron donor.  相似文献   

6.
The ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 has been shown to form a high-affinity complex with ferredoxin at low ionic strength. This complex, detected by changes in both the absorbance and circular dichroism (CD) spectra, did not form at high ionic strength. When reduced ferredoxin served as the electron donor for the reduction of nitrate to nitrite, the activity of the enzyme declined markedly as the ionic strength increased. In contrast, the activity of the enzyme with reduced methyl viologen (a non-physiological electron donor) was independent of ionic strength. These results suggest that an electrostatically stabilized complex between Synechococcus nitrate reductase and ferredoxin plays an important role in the mechanism of nitrate reduction catalyzed by this enzyme. Treatment of Synechococcus nitrate reductase with either an arginine-modifying reagent or a lysine-modifying reagent inhibited the ferredoxin-dependent activity of the enzyme but did not affect the methyl viologen-dependent activity. Treatment with these reagents also resulted in a large decrease in the affinity of the enzyme for ferredoxin. Formation of a nitrate reductase complex with ferredoxin prior to treatment with either reagent protected the enzyme against loss of ferredoxin-dependent activity. These results suggest that lysine and arginine residues are present at the ferredoxin-binding site of Synechococcus nitrate reductase. Results of experiments using site-specific, charge reversal variants of the ferredoxin from the cyanobacterium Anabaena sp. PCC 7119 as an electron donor to nitrate reductase were consistent with a role for negatively charged residues on ferredoxin in the interaction with Synechococcus nitrate reductase.  相似文献   

7.
The nitrite reductase from the extreme halophilic archaeon, Haloferax mediterranei, has been purified and characterised. H. mediterranei is capable of growing in a minimal medium (inorganic salts and glucose as a carbon source) with nitrate as the only nitrogen source. The overall purification was 46-fold with about 4% recovery of activity. The enzyme is a monomeric protein of approximately 66 kDa. A pH of 7.5 and high temperatures up to 60 degrees C are necessary for optimum activity. Reduced methyl viologen has been found to be an electron donor as effective as ferredoxin. NADPH and NADH, which are electron donors in nitrite reductases from different non-photosynthetic bacteria, were not effective with nitrite reductase from H. mediterranei.  相似文献   

8.
The steady-state kinetic parameters of the enzymatic reduction of nitrite by spinach ferredoxin-nitrite reductase [EC 1.7.7.1] were measured under anaerobic conditions. The maximum velocity of ferredoxin-linked activity was essentially the same as for the methyl viologen-linked activity of the enzyme. The initial velocity patterns of the oxidation of reduced ferredoxin suggested a sequential reaction scheme by which nitrite and reduced ferredoxin bind to the free enzyme. The binding of nitrite and ferredoxin to the enzyme was also investigated by different spectra produced by the complex formed by the enzyme with the substrates. Nitrite and ferredoxin each gave a 1: 1 complex with the enzyme. The dissociation constant (Kd) of the enzyme-nitrite complex agreed well with the Km value for the ferredoxin-linked activity, whereas the Kd of the enzyme-ferredoxin complex differed from the Km value for the enzyme activity. It was concluded that our preparation of spinach ferredoxin-nitrite reductase differs from both the complex (Mr = 85,000) and the modified (Mr = 61,000) forms of the enzyme reported by Hirasawa et al. [J. Biol. Chem. 262, 12428-12433 (1987)].  相似文献   

9.
The ferredoxin-dependent nitrite reductase from the green alga Chlamydomonas reinhardtii has been cloned, expressed in Escherichia coli as a His-tagged recombinant protein, and purified to homogeneity. The spectra, kinetic properties and substrate-binding parameters of the C. reinhardtii enzyme are quite similar to those of the ferredoxin-dependent spinach chloroplast nitrite reductase. Computer modeling, based on the published structure of spinach nitrite reductase, predicts that the structure of C. reinhardtii nitrite reductase will be similar to that of the spinach enzyme. Chemical modification studies and the ionic-strength dependence of the enzyme’s ability to interact with ferredoxin are consistent with the involvement of arginine and lysine residues on C. reinhardtii nitrite reductase in electrostatically-stabilized binding to ferredoxin. The C. reinhardtii enzyme has been used to demonstrate that hydroxylamine can serve as an electron-accepting substrate for the enzyme and that the product of hydroxylamine reduction is ammonia, providing the first experimental evidence for the hypothesis that hydroxylamine, bound to the enzyme, can serve as a late intermediate during the reduction of nitrite to ammonia catalyzed by the enzyme.  相似文献   

10.
Chemical analysis of the ferredoxin-dependent native form (Mr = 85,000) of spinach nitrite reductase has demonstrated a siroheme content that approaches 2 mol of siroheme/mol of enzyme. A widely studied modified (Mr = 61,000) form of nitrite reductase, that has lost much of the native enzyme's ability to use ferredoxin as an electron donor, contains approximately 1 mol of siroheme/mol of enzyme. Quantitation of the high spin ferri-siroheme EPR signals and of nitrite-binding sites of the two preparations confirmed that the native enzyme's siroheme content is approximately twice that of the modified enzyme. Plots of nitrite and cyanide binding to the native enzyme versus ligand concentration are sigmoidal, with Hill coefficients of 1.6-1.8 and 2.3-2.8, respectively. Plots of enzyme activity versus nitrite concentration for the native enzyme are sigmoidal with a Hill coefficient of 2.4. Cyanide inhibition of enzymatic activity was shown to be not competitive. Addition of cyanide to the native enzyme resulted in a diminution of the high spin ferri-siroheme EPR signal and produced EPR signals with g values of 2.71, 2.33, and 1.49 due to low spin ferri-siroheme.  相似文献   

11.
The nitrite reductase gene (nirA) from the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 (A. PCC 7120) was expressed in Escherichia coli using the pET-system. Co-expression of the cysG gene encoding siroheme synthase of Salmonella typhimurium increased the amount of soluble, active nitrite reductase four fold. Nitrite reductase was purified to homogeneity. In order to identify amino acid residues involved in ferredoxin (PetF)-nitrite reductase electron transfer in A. PCC 7120, we performed a sequence comparison between ferredoxin-dependent nitrite reductases from various species. The alignment revealed a number of conserved residues possibly involved in ferredoxin nitrite reductase interaction. The position of these residues relative to the [4Fe4S]-cluster as the primary electron acceptor was tentatively localized in a three dimensional structure of the sulfite reductase from E. coli, which is closest related to nitrite reductase among the proteins with known tertiary structure. The exchange of certain positively charged amino acid residues of the nitrite reductase with uncharged residues revealed the influence of these residues on the interaction of nitrite reductase with reduced ferredoxin. We identified at least two separate regions of nitrite reductase that contribute to the binding of ferredoxin.  相似文献   

12.
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia as a key step within the biological nitrogen cycle. Most recently, the crystal structure of the soluble enzyme from Sulfurospirillum deleyianum could be solved to 1.9 A resolution. This set the basis for new experiments on structural and functional aspects of the pentaheme protein which carries a Ca(2+) ion close to the active site heme. In the crystal, the protein was a homodimer with ten hemes in very close packing. The strong interaction between the nitrite reductase monomers also occurred in solution according to the dependence of the activity on the protein concentration. Addition of Ca(2+) to the enzyme as isolated had a stimulating effect on the activity. Ca(2+) could be removed from the enzyme by treatment with chelating agents such as EGTA or EDTA which led to a decrease in activity. In addition to nitrite, the enzyme converted NO, hydroxylamine and O-methyl hydroxylamine to ammonia at considerable rates. With N2O the activity was much lower; most likely dinitrogen was the product in this case. Cytochrome c nitrite reductase exhibited a remarkably high sulfite reductase activity, with hydrogen sulfide as the product. A paramagnetic Fe(II)-NO, S = 1/2 adduct was identified by rapid freeze EPR spectroscopy under turnover conditions with nitrite. This potential reaction intermediate of the reduction of nitrite to ammonia was also observed with PAPA NONOate and Spermine NONOate.  相似文献   

13.
Polyclonal antisera were prepared against ferredoxin-nitrite reductase (EC 1.7.7.1) and ferredoxin-glutamate synthase (glutamate synthase (ferredoxin); EC 1.4.7.1) from the green algaChlamydomonas reinhardtii. The anti-glutamate synthase antibodies recognized both glutamate synthase and nitrite reductase, but inhibited only the ferredoxin-linked activity of the latter enzyme and not the activity dependent on methyl viologen. Analogously, the anti-nitrite reductase antibodies recognized glutamate synthase and nitrite reductase but the first enzyme was only poorly inhibited. Free ferredoxin protected the nitrite reductase against its inactivation by anti-glutamate synthase antibodies. These results indicate that the ferredoxin-dependent glutamate synthase and nitrite reductase from this alga share common antigenic determinants, and that these are located at the ferrodoxin-binding domains.  相似文献   

14.
Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate. Received: 13 March 1995 / Accepted: 29 May 1995  相似文献   

15.
Nitrite reductase from green leaves of corn (Zea mays L.) is eluted from a diethylaminoethyl-cellulose column in one peak of activity by a chloride gradient, while nitrite reductase from scutellum tissue is resolved into two peaks of activity, apparently representing two forms of the enzyme NiR1 and NiR2. One of these (NiR2) elutes at the same concentration of chloride as the leaf nitrite reductase. Roots and etiolated shoots also exhibited both forms of the enzyme, however, lesser amounts of NiR1 is extractable from these tissues than from scutellum. Comparison of green leaf nitrite reductase with NiR2 from scutellum tissue shows similar or identical properties with respect to molecular weight, isoelectric point, electron donor requirements, inhibition properties, pH optima, thermal stability, and pH tolerance. The significance of these similarities in relation to probable differences in the biochemical mechanism of nitrite reduction between leaf and scutellum tissues is discussed. Although ferredoxin is considered, with some reservations, to be the electron donor for nitrite reductase in green tissue, the reductant for nongreen tissue is not known. The possibility that nitrite reductases from green and non-green tissues uses the same electron donor, in vivo, is considered.  相似文献   

16.
The Neurospora crassa assimilatory NADPH-nitrite reductase (NAD(P)H: nitrite oxidoreductase, EC 1.6.6.4), which catalyzes the NADPH-dependent formation of ammonia from nitrite, has been purified to homogeneity as judged by polyacrylamide gel electrophoresis. The specific activity of the purified enzyme is 26.9 mumol nitrite reduced/min per mg protein, which corresponds to a turnover number of 7800 min(-1). The enzyme also has associated NADH-nitrite reductase, NADPH-hydroxylamine reductase and NADH-hydroxylamine reductase activities. The stoichiometry of 3 mol NADPH oxidized per mol nitrite reduced and ammonia formed has been confirmed. The visible absorption spectrum of the nitrite reductase reveals maxima at 280,390 (Soret) and 580 (alpha) nm. The latter bands are indicative of the occurrence of siroheme as a prosthetic group. The A280nm/A390nm ratio of 7.0 and the Soret/alpha ratio of 3.8 are compatible with values reported for other purified siroheme-containing enzymes. These results are discussed in terms of the comparative biochemistry of various enzymes involved in nitrite, hydroxylamine and sulfite metabolism in Neurospora crassa and other organisms.  相似文献   

17.
Summary The dark and light reduction of nitrate and nitrite by cell-free preparations of the blue-green algaAnacystis nidulans has been investigated. The three following methods have been successfully applied to the preparation of active particulate fractions from the alga cells: (a) shaking with glass beads, (b) lysozyme treatment and lysis of the resulting protoplasts, and (c) sonication. The two enzymes of the nitrate-reducing system-namely, nitrate reductase and nitrite reductase-are firmly bound to the isolated pigment-containing particles, and can be easily solubilized by prolonging the vibration or sonication time.Both enzymes-whether solubilized or bound to the particles-depend on reduced ferredoxin as the immediate electron donor. In its presence, the alga particles catalyze the gradual photoreduction of nitrate to nitrite and ammonia, a process that can thus be considered as one of the most simple and relevant examples of Photosynthesis. Some of the properties of nitrate reductase have been studied. Nitrate reductase as well as nitrite reductase are adaptive enzymes repressed by ammonia.An invited article.  相似文献   

18.
Nitrite reductase was purified about 40-fold from the blue-greenalga Anabaena cylindrica by acetone precipitation and chromatographyon DEAE-cellulose columns. The nitrite reductase had its pHoptima at about 7.6 with Tris-HCl and at about 7.4 with phosphatewhen reduced methyl viologen was used as an electron donor.The Km's for nitrite, methyl viologen and ferredoxin were 510–55,210–4 and 510–6M, respectively. A stoichiometryof one molecule of ammonia formation per one molecule of nitritedisappearance was confirmed. Ferredoxin which had been reducedeither chemically with dithionite or enzymatically with NADPHin the presence of diaphorase was active as an electron donor.Dithionite-reduced FAD and FMN were inactive. NADPH could notgive electrons directly to nitrite reductase. Hydroxylaminereductase was segregated from nitrite reductase by DEAE-cellulosecolumn chromatography. Purified nitrite reductase showed noactivity for sulfite reduction. A molecular weight of 68,000was estimated for nitrite reductase using a calibrated SephadexG-200 column. 1This work was supported by grants 4090 and 955008 from theMinistry of Education. 2This work was supported by grants 4090 and 955008 from theMinistry of Education. 2 Present address: Department of Botany,Faculty of Science, University of Tokyo, Tokyo.  相似文献   

19.
A ferredoxin-dependent nitrite reductase from Spinacea oleracea was purified approximately 180-fold, with a specific activity of 285 units/mg protein. This purified enzyme also had methyl viologen-dependent nitrite reductase activity, with a specific activity of 164 units/mg protein. After disc electrophoresis with polyacrylamide gel, the purified enzyme showed one major and one minor protein band.

The molecular weight of the enzyme was estimated to be 86,000 from Ultrogel filtration. This purified enzyme in oxidized form had absorption peaks at 278, 390, 573 and 690 nm. The absorbance ratios, A390: A278 and A673: A390 were 0.61 and 0.37, respectively.

By applying the purified enzyme to DEAE-Sephadex A–50 column chromatography, the ferredoxin-dependent nitrite reductase activity was selectively decreased. However, the methyl viologen-dependent nitrite reductase activity was increased, with a specific activity of 391 units/mg protein. This modified enzyme was homogeneous by disc electrophoresis with polyacrylamide gel.  相似文献   

20.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号