首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Under the conditions that RNA ligase converts the tetranucleotide, pA-A2-A, to larger polynucleotides, no such polymerization can be detected with the derivative, pA-A2-A(MeOEt), that possesses a terminal 2'-0-(alpha-methoxyethyl) group. The protection against self condensation offered by the methoxyethyl group in this system allows the specific joining of donor and acceptor oligonucleotides in reaction mixtures containing equimolar concentrations of the two species. Thus, the enzyme, together with ATP, converts equimolar quantities of A-A2-A and pA-A2-A(MeOEt) to A-A6-A(MeOEt) in 55% yield, while a similar reaction with A-A2-A and pU-U2-U(MeOEt) results in a 40% yield of A-A3-U3-U(MeOEt). The intermediate in these ligations is a disubstituted pyrophosphate composed of the donor molecule and the adenylate moiety deriving from ATP. In the case of the intermediate arising from the blocked adenosine tetranucleotide, the assigned structure, A5'pp5'A-A2-A(MeOEt), has been confirmed by chemical synthesis. The pyrophosphate derivative is able to participate in joining reactions in the absence of ATP. These observations constitute an efficient approach to the synthesis of larger polynucleotides from a specific series of oligonucleotide blocks since (i), the methoxyethyl group can be easily introduced into each oligonucleotide using the single addition reaction catalyzed by polynucleotide phosphorylase in the presence of a 2'-0-(alpha-methoxyethyl)nucleoside 5'-diphosphate, and (ii), the blocking group may be readily removed under mild conditions after each successive ligation reaction. Two other octanucleotides, I-I2-A-U3-U and U-U2-C-I3-A, have also been synthesized by this method, and these molecules correspond (with I substituting for G) to sequences appearing near the 3' terminus of the 6S RNA transcribed from phage lambda DNA. The terminal 3'-phosphate group serves equally well as a blocking group for specific ligation reactions in that the ligase converts equimolar amounts of A-A2-A and pA-A2-Ap to A-A6-Ap in 50% yield.  相似文献   

2.
K A Ost  M P Deutscher 《Biochimie》1990,72(11):813-818
Escherichia coli RNase PH is a phosphate-dependent exoribonuclease that has been implicated in the 3' processing of tRNA precursors. It degrades RNA chains in a phosphorolytic manner releasing nucleoside diphosphates as products. Here we show that RNase PH also catalyzes a synthetic reaction, the addition of nucleotides to the 3' termini of RNA molecules. The synthetic activity co-purifies with RNase PH throughout an extensive enrichment indicating that it is due to the same enzyme. The synthetic activity can incorporate all nucleoside diphosphates, but not triphosphates, and is strongly inhibited by Pi, but not PPi. Various RNA molecules stimulate nucleotide incorporation, and with tRNA the 3' end of the molecule serves a primer function. RNA chains as long as 40 residues can be synthesized in this system. As with polynucleotide phosphorylase, the synthetic activity of RNase PH apparently represents the reversal of the degradative reaction.  相似文献   

3.
Bacillus amyloliquefaciens BaM-2 produces large amounts of extracellular enzymes, and the synthesis of these proteins appears to be dependent upon abnormal ribonucleic acid metabolism. A polynucleotide phosphorylase (nucleoside diphosphate:polynucleotide nucleotidyl transferase) was identified, purified, and characterized from this strain. The purification scheme involved cell disruption, phase partitioning, differential (NH4)2SO4 solubilities, agarose gel filtration, and diethylaminoethyl-Sephadex chromatography. The purified enzyme demonstrated the reactions characteristic of polynucleotide phosphorylase: polymerization, phosphorolysis, and inorganic phosphate exchange with the beta-phosphate of a nucleotide diphosphate. The enzyme was apparently primer independent and required a divalent cation. The reactions for the synthesis of the homopolyribonucleotides, (A)n and (G)n, were optimized with respect to pH and divalent cation concentration. The enzyme is sensitive to inhibition by phosphate ion and heparin and is partially inhibited by rifamycin SV and synthetic polynucleotides.  相似文献   

4.
A procedure has been outlined for the synthesis of ribonucleoside 3'-di- and -triphosphates. The synthetic scheme involves the conversion of a ribonucleoside 3'-monophosphate to its 2'-(5'-di)-O-(1-methoxyethyl) derivative, followed by successive treatments of the blocked ribonucleotide with 1,1'-carbonyldiimidazole and mono(tri-n-butylammonium) phosphate or pyrophosphate. The resulting ribonucleoside 3'-di- and -triphosphate derivatives are then deblocked by treatment with dilute aqueous acetic acid, pH 3.0. The use of this procedure is illustrated for adenosine 3'-monophosphate, which has been converted to its corresponding 3'-di- and -triphosphates in 61% overall yield. The decomposition of adenosine 3'-di- and -triphosphates to adenosine 2'-monophosphate, adenosine 3'-monophosphate, and adenosine cyclic 2',3'-monophosphate as a function of pH at 100 degrees has been studied as has the attempted polymerization of adenosine 3'-diphosphate with polynucleotide phosphorylase. Also prepared was guanosine 5'-diphosphate 3'-diphosphate (guanosine tetraphosphate; ppGpp), which was accessible via treatment of 2'-O-(1-methoxyethyl)guanosine 5'-monophosphate 3'-monophosphate with the phosphorimidazolidate of mono(tri-n-butyl ammonium) phosphate. The resulting blocked tetraphosphate was deblocked in dilute aqueous acetic acid to afford ppGpp in an overall yield of 18%.  相似文献   

5.
G N Bennett  G R Gough  P T Gilham 《Biochemistry》1976,15(21):4623-4628
A new procedure for the synthesis of the pyrophosphate bond has been employed in the preparation of nucleoside dipyrophosphates from nucleoside 3',5'-diphosphates. The method makes use of a powerful phosphorylating agent generated in a mixture of cyanoethyl phosphate, dicyclohexylcarbodiimide, and mesitylenesulfonyl chloride in order to avoid possible intramolecular reactions between the two phosphate groups on the sugar ring. That such reactions can readily occur was shown by the facile cyclization of deoxyguanosine 3',5'-diphosphate to P1,P2-deoxyguanosine 3',5'-cyclic pyrophosphate in the presence of dicyclohexylcarbodiimide alone. The phosphorylation reagent was initially tested in the conversion of deoxyguanosine 3',5'-diphosphate to the corresponding 3',5'-dipyrophosphate and was then used to phosphorylate 2'-O-(alpha-methoxyethyl)guanosine 3',5'-diphosphate, which had been prepared from 2'-O-(alpha-methoxyethyl)guanosine. In the latter case, the addition of the two beta phosphate groups was accomplished in 40% yield. Removal of the methoxyethyl group from the phosphorylated product gave guanosine 3',5'-dipyrophosphate, which was shown to be identical with guanosine tetraphosphate prepared enzymatically from a mixture of GDP and ATP. A modification of published procedures was also necessary to effect the synthesis of guanosine bis(methylenediphosphonate). Guanosine was treated with methylenediphosphonic acid and dicyclohexylcarbodiimide in the absence of added base. The product consisted of a mixture of guanosine 2',5' - and 3',5'-bis(methylenediphosphonate), which was resolved by anion-exchange chromatography. The 2',5' and 3',5' isomers are interconvertible at low pH, with the ultimate formation of an equilibrium mixture having a composition ratio of 2:3. The predominant constituent of this mixture has been unequivocally identified as the 3',5' isomer by synthesis from 2'-O-tetrahydropyranylguanosine.  相似文献   

6.
A new route for the synthesis of 1-(beta-D-allofuranosyl)uracil ("allo-uridine") and the corresponding 6'-deoxy-derivative ("6'-deoxy-allo-uridine") as well as for 1-(beta-D-altrofuranosyl) uracil ("altro-uridine") is described. NMR studies of allo-uridine revealed a preferred conformation with the base in anti-position, C-2'-endo-pucker of the sugar moiety, the 5'-OH-group above the furanose ring and the 5'-CH2OH-group in a gt position with the OH-group in the plane of the furanose ring. The same conformation is found for the 5'- and 6'-phosphate, indicated by the influence of the phosphate group on the H-6 signal. Allo-uridine is phosphorylated by the phosphotransferases from carrot and from malt sprouts only in the 6'-position. The phosphate ester is hydrolysed by unspecific phosphatases but not by 5'-nucleotidase. A (3' leads to 6')-dinucleoside phosphate is formed by pancreatic ribonuclease with 2',3'-cyclic cytidylic acid and allo-uridine. It is split by nuclease S1, but not by snake-venom phosphodiesterase. It has no primer activity for polynucleotide phosphorylase. All-uridine 6'-diphosphate could not be prepared enzymatically by nucleotide kinase or by chemical methods, where 5',6'-cyclic phosphates are formed, which are hydrolysed exclusively to 6'-monophosphates.  相似文献   

7.
Interactions between the Escherichia coli primary replicative helicase DnaB protein and nucleotide cofactors have been studied using several fluorescent nucleotide analogs and unmodified nucleotides. The thermodynamically rigorous fluorescent titration technique has been used to obtain true binding isotherms, independently of the assumptions of any relationships between the observed quenching of protein fluorescence and the degree of nucleotide binding. Fluorescence titrations using several MANT derivatives of nucleoside diphosphates (MANT-ADP, 3',2'-O-(N-methylantraniloyl)adenosine-5'-diphosphate; MANT-GDP, 3',2'-O(N-methylantraniloyl)guanosine-5'-diphosphate; MANT-CDP, 3',2'-O-(N-methylantraniloyl)cytidine-5'-diphosphate; MANT-UDP, 3',2'-O-(N-methylantraniloyl)uridine-5'-diphosphate) have shown that the DnaB helicase has a preference for purine nucleotides. Binding of all modified nucleotides is characterized by similar negative cooperativity, indicating that negative cooperative interactions are base-independent. Thermodynamic parameters for the interactions of the unmodified nucleotides (ADP, GDP, CDP, and UDP) and inorganic phosphate (P(i)) have been obtained by using the competition titration approach. To analyze multiple ligand binding to a finite circular lattice, for a general case in which each lattice binding site can exist in different multiple states, we developed a matrix method approach to derive analytical expressions for the partition function and the average degree of binding for such cases. Application of the theory to competition titrations has allowed us to extract the intrinsic binding constants and cooperativity parameters for all unmodified ligands. This is the first quantitative estimate of affinities and the mechanisms of binding of different unmodified nucleotides and inorganic phosphate for a hexameric helicase. The intrinsic affinities of all of the studied ATP analogs are lower than the intrinsic affinities of the corresponding ADP analogs. The implications of these results for the mechanism of helicase action are discussed.  相似文献   

8.
Two procedures were investigated for the modification of tRNAs at the 3'-terminal nucleoside. The first involved the incubation of an enzymatically abreviated tRNA (tRNA-C-COH) with appropriate nucleoside triphosphates in the presence of CTP(ATP):tRNA nucleotidyltransferase from Escherichia coli and yeast. The E. coli enzyme did not utilize 2'- or 3'-deoxyadenosine 5'-triphosphate as substrates, but affected incorporation of the 2'- and 3'-O-methyladenosine triphosphates onto tRNA-C-Cou to the extent of 30 and 37%, respectively. Although incorporation of the deoxynucleotides could not be effected using the E. coli enzyme, yeast CTP(ATP:tRNA nucleotidyltransferase produced the desired tRNAs in yields of 45-65%. The second modification procedure involved incubation of tRNA-C-COH with (appropriately blocked) nucleoside diphosphates in the presence of polynucleotide phosphorylase. This procedure afforded the tRNAs terminating in 2'- and 3'-deoxyadenosine in yields of 4% (and the yield of the former was increased to 36% when the incubation was carried out in the presence of 20% methanol). The yields of tRNAs terminating in 2'- and 3'-O-methyladenosing produced by this procedure were 55 and 17%, respectively. Because only single isomers of most of the tRNAs terminating in 2'- and 3'-deoxy- and O-methyladenosine are aminoacylated, attempts were made to obtain the other isomericaminoacyl-tRNA by enzymatic introduction of chemically preaminoacylated nucleotides onto tRNA-C-COH. Although incubation of tRNA-C-COH with three aminoacylated nucleoside 5'-triphosphates and E. coli CTP(ATP):tRNA nucleotidyltransferase did not result in production of the desired tRNAs to a detectable extent, incubation with 2'-deoxy-3'-O-L-phenylalanyladenosine 5'-diphosphate and polynucleotide phosphorylase afforded E. coli tRNA terminating with the corresponding aminoacylated deoxynucleoside.  相似文献   

9.
Polynucleotide phosphorylase is a prokaryotic enzyme that catalyzes phosphorolysis of polynucleotides with release of nucleotide diphosphates. By taking advantage of this property, we developed a photometric assay for inorganic phosphate. In the presence of polyadenylic acid, phosphate is converted into adenosine 5'-diphosphate (ADP) by this enzyme. ADP then reacts with phosphoenolpyruvate in a pyruvate kinase-catalyzed reaction, thus giving rise to adenosine 5'-triphosphate and pyruvate. Finally, pyruvate oxidizes reduced nicotinamide adenine dinucleotide (NADH) through the action of L-lactate dehydrogenase, with concomitant decrease in absorbance at 340 nm. As expected, in this detection system 1 mol of NADH was oxidized per mole of phosphate. The assay showed an excellent reproducibility, as the standard deviations never exceeded 5%. It also was shown to be unaffected by several compounds that are regarded as major interferents of the traditional colorimetric assays. Absence of interference was also demonstrated when determining phosphate content in different biological samples, such as human serum and perchloric acid extracts from Escherichia coli, yeast, and bovine liver. An E. coli strain overexpressing His-tagged polynucleotide phosphorylase developed in our laboratories allowed quick and straightforward purification of enzyme, making the assay feasible and convenient. Since all other reagents required are inexpensive, the assay represents a cheaper alternative to commercially available phosphate assay kits.  相似文献   

10.
G N Bennett  P T Gilham 《Biochemistry》1975,14(14):3152-3158
A number of synthetic methods for the preparation of the 2-O-(alpha-methoxyethyl) derivatives of the 5-diphosphates of adenosine, cytidine, guanosine, and uridine have been studied in order to provide nucleotide substrates that can be applied to the synthesis of specific oligoribonucleotides using polynucleotide phosphorylase. The reaction of nucleoside 5-diphosphates with methyl vinyl ether for a limited time produces low yields of the corresponding 2-O-(alpha-methoxyethyl) derivatives because the rate of methoxyethylation of the 3-hydroxyl groups. A study of the rates of acidic hydrolysis of alpha-methoxyethyl groups in the 2 and 3 positions of nucleosides and nucleotides has been made, and the results obtained form the basis of a more efficient method for the synthesis of the blocked nucleoside diphosphates. The method involves the reaction of nucleoside 5-diphosphates with methyl vinyl ether to give the corresponding 2,3-di-O-(alpha-methoxyethyl)nucleoside 5-diphosphates, and exploits the fact that, in the acidic hydrolysis of these derivatives, the rate of removal of the 3-methoxyethyl group is about twice that of the group in the 2 position. Alternative syntheses were based on the phosphorylation of methoxyethylated nucleosides and nucleotides. The derivatives, 2-O- and 2,3-di-O-(alpha-methoxyethyl)uridine, were prepared by the methoxyethylation of 3,5-di-O-acetyluridine and 5-O-acetyluridine followed by removal of the acetyl groups. The corresponding guanosine derivatives were made by the synthetic routes: (i) guanosine leads to O-2,O-3,O-5,N-2-tetrabenzoylguanosine leads to 2-N-benzoylguanosine leads to O3-acetyl-N-2,O5-dibenzoylguanosine leads to 2-O-(alpha-methoxyethyl)guanosine, and (ii) 2,3-O-isopropylideneguanosine leads to N-2,O5-diacetyl-2,3-O-isopropylideneguanosine leads to N-2,O-5-diacetylguanosine leads to 2,3-di-O-(alpha-methoxyethyl)guanosine. These methoxyethylated nucleosides were converted to the corresponding 5-phosphates by reaction with cyanoethyl phosphate and dicyclohexylcarbodiimide, and then to the corresponding 5-diphosphates by subsequent reaction with 1,1-carbonyldiimidazole and inorganic phosphate.  相似文献   

11.
Two hexanucleotides A-U-G-U-G-A and C-A-A-U-U-G were synthesized from the chemically synthesized trimers C-A-A and A-U-G by addition of 2'-O-(o-nitrobenzyl)nucleoside diphosphates using polynucleotide phosphorylase isolated from either Escherichia coli or Micrococcus luteus. In each reaction the preference of the enzyme was tested. The o-nitrobenzyl group was removed after addition of the mononucleotide and the deblocked product was isolated by chromatography on DEAE-Sephadex in high yields.  相似文献   

12.
1. Phosphorolytic cleavage of Ap(4),A was demonstrated in cell-free extracts from two protozoan organisms, Euglena gracilis and Acanthamoeba castellanii. 2. A specific dinucleoside oligophosphate (DNOP) alpha, beta-phosphorylase which degrades substrates with formation of corresponding nucleoside 5'-diphosphate (NDP) as one of the reaction products was purified 625-fold from Euglena gracilis cells. 3. In addition to Ap(4)A, the phosphorylase degrades AP(3)A, Ap(5)A, Gp(4)G and one of phosphonate analogs, ApppCH(2)pA. The K(m) values for Ap(4), A and Ap(3) A are 27 and 25 micron, and relative velocities 100 and 14, respectively. The K(m) for phosphate is 0.5 mM. 4. Some anions (arsenate, chromate, molybdate and vanadate) can substitute for phosphate in the catalyzed reactions and in their presence the DNOPs yield corresponding nucleoside 5'-monophosphate as one of the reactions' product. The enzyme supports also an anion-dependent dephosphorylation of NDPs. 5. Molecular weight of the native Euglena phosphorylase is 30,000. Optimum pH for its activity is at 8.0 Divalent metal cations are essential for the phosphorolysis of DNOPs but are not for the NDP dephosphorylation mentioned.  相似文献   

13.
Mechanism of polynucleotide phosphorylase   总被引:4,自引:0,他引:4  
The de novo polymerization of RNA initiated by polynucleotide phosphorylase from nucleoside diphosphates was examined. End group analysis performed under conditions designed to specifically end label the polymer revealed no evidence for a 5'-pyrophosphate-terminated polymer. However, we observed preferential incorporation of the ADP alpha S(RP) diastereomer into the 5' end (Marlier & Benkovic, 1982) in chain initiation, suggesting that the enzyme incorporates a nucleoside diphosphate specifically into the 5' end of the product, with subsequent enzymatic removal of the polyphosphate linkage. No evidence could be obtained for a covalent adduct between the enzyme and the 5' end of the polymer chain, despite the high processivity of the polymerization reaction. Gel electrophoretic analysis showed the polymer to be highly disperse, varying from 1 to 30 kb. Scanning transmission electron microscopy supported this product analysis and further suggested that (i) each subunit can produce an RNA polymer and (ii) both 5' and 3' ends of the RNA can be bound simultaneously to the same or differing enzyme molecules.  相似文献   

14.
Polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) has been purified approx. 1500-fold from calf thymus. This enzyme phosphorylates 5'-hydroxyl termini in DNA using ATP as phosphate donor. RNA is phosphorylated at a much lower rate than DNA. The reaction requires the presence of a divalent cation, preferably Mg2+ or Mn2+ and is sensitive to sulfhydryl antagonists. The optimum pH for enzyme activity is 5.5. Enzyme activity is inhibited by low concentrations of inorganic sulfate and by some sulfate polymers. The kinase-catalyzed incorporation of the terminal phosphate of ATP into polynucleotides is inhibited by other nucleoside and deoxynucleoside triphosphates. The enzyme molecule has a molecular weight of about 70 000 and a Stokes radius of 4.3 nm. It has a frictional ratio of 1.44 indicating an asymmetrical structure. Calf thymus tissue should provide a useful alternative source for preparation of mammalian polynucleotide kinase.  相似文献   

15.
Reactions at the termini of tRNA with T4 RNA ligase.   总被引:4,自引:1,他引:3       下载免费PDF全文
T4 RNA ligase will catalyze the addition of nucleoside 3', 5'-bisphosphates onto the 3' terminus of tRNA resulting in tRNA molecule one nucleotide longer with a 3' terminal phosphate. Under appropriate conditions the reaction is quantitative and, if high specific radioactivity bisphosphates are used, it provides an efficient means for in vitro labeling of tRNA. Although the 3' terminal hydroxyl is a good acceptor, the 5' terminal phosphate in most tRNA's is not an effective donor in the RNA ligase reaction. This poor reactivity is due to the secondary structure of the 5' terminal nucleotide. If E. Coli tRNAf Met is used, the 5' phosphate is reactive and the major product with RNA ligase is the cyclic tRNA.  相似文献   

16.
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.  相似文献   

17.
An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.  相似文献   

18.
1. Polynucleotide phosphorylase was partially purified from the inner membrane of rat liver mitochondria. 2. The partially purified particulate enzyme catalyses phosphorolysis of poly(A), poly(C), poly(U) and RNA to nucleoside diphosphates. 3. It is devoid of nucleoside diphosphate-polymerization activity. 4. Variable amounts of ADP/P(i)-exchange activity are associated with the polynucleotide phosphorylase and are probably due to a different enzyme. 5. ADP is the preferred substrate for exchange, and little or no reaction occurs with other nucleoside diphosphates, but ATP/P(i)-exchange takes place at one-third the rate observed with ADP. 6. The partially purified enzyme is free from the phosphatases found in the crude mitochondrial inner membrane, but is associated with an endonuclease activity and some adenylate kinase activity; no cytidylate kinase activity analogous to the latter was detectable.  相似文献   

19.
20.
Human deoxycytidine kinase (dCK) is a key enzyme in the 5'-phosphorylation of purine and pyrimidine deoxynucleosides with deoxycytidine as the most efficient substrate. The ability of dCK to degrade 2'-deoxyribonucleosides to free nucleobases and 2-deoxy-alpha-d-ribofuranose-1-phosphate was demonstrated by 1H-31P correlation spectroscopy and by isotope enzyme kinetic methods. The reaction depended on inorganic phosphate, and dCK showed maximum cleavage activity between pH 7 and pH 8. In this pH range, [HPO4(2-)] is the dominant phosphate species, most likely being the phosphate donor. All natural deoxyribonucleosides could be cleaved and the Vmax of the phosphorylytic reaction compared to the kinase reaction was about 2-10%. The formation of free nucleobases occurred only with reduced dCK, because the reaction was highly dependent on the presence of reducing agents such as dithiotreitol. Thus, recombinant dCK can act as a phosphorylase, similar to the nucleoside phosphorylase family of enzymes. This catalytic activity is important for the design of in vitro experiments with dCK, such as crystallization and NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号