首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 3-acyloxy-2-phenalkylpropyl amides and esters of homovanillic acid were designed and synthesized as vanilloid receptor agonists containing the three principal pharmacophores of resiniferatoxin. Amide analogues 23, 5 and 11 were found to be potent agonists in vanilloid receptor assay both for ligand binding and for activation.  相似文献   

2.
In order to improve the analgesic activity and pharmacokinetics of thioureas 2 and 3, which we previously developed as potent vanilloid receptor (VR) agonists, we prepared and characterized phenolic modifications of them and of their amide surrogates (7, 8). The aminoethyl analogue of the amide template 13 was a potent analgesic with an EC50=0.96 microg/kg in the AA-induced writhing test and with better in vivo stability than the parent phenol.  相似文献   

3.
The effects of capsaicin analogs on adrenaline secretion were investigated in rats. Capsaicin (20-100 microg/kg, i.v.) caused biphasic adrenaline secretion. Capsazepine (20 mg/kg, i.v.), a specific competitive antagonist of the vanilloid (capsaicin) receptor, strongly inhibited both phases of adrenaline secretion by capsaicin (50 microg/kg). Next, the effects of two capsaicin analogs on the adrenal catecholamine secretion were examined. Resiniferatoxin (20-200 ng/kg, i.v.), a naturally occurring phorbolester-like compound, provoked slow onset adrenaline secretion in a dose-dependent manner. Olvanil (2.46-246 microg/kg, i.v.), a synthesized non pungent capsaicin analog, also stimulated delayed catecholamine secretion dose-dependently. Capsazepine (20 mg/kg, i.v.) pretreatment prevented the resiniferatoxin (50 ng/kg)- and olvanil (24.6 microg/kg)-induced catecholamine secretion. These results suggest that some vanilloids (capsaicin, resiniferatoxin, olvanil) excite adrenaline secretion and such excitation is via the vanilloid receptor.  相似文献   

4.
The vanilloid receptor represents a promising target for drug development. Building on our previous strategies which have generated potent agonists for VR1, we now describe a series of novel N-(3-acyloxy-2-benzylpropyl)-N'-dihydroxytetrahydrobenzazepine and tetrahydroisoquinoline thiourea analogues, several of which are potent VR1 antagonists. We report here the rationale for the design, the synthesis, and the in vitro characterization of activity in assays for [(3)H]resiniferatoxin binding and (45)Ca influx using heterologously expressed rat VR1.  相似文献   

5.
A Szallasi  P M Blumberg 《Life sciences》1990,47(16):1399-1408
Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific [3H]RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.  相似文献   

6.
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.  相似文献   

7.
The cloned vanilloid receptor 1 (VR1) is a ligand-gated calcium channel that is believed to be the capsaicin-activated vanilloid receptor found in native tissues, based on similarities regarding molecular mass, tissue distribution, and electrophysiological properties. Using a Fluorescent Imaging Plate Reader (FLIPR), along with Fluo-3 to signal intracellular calcium levels ([Ca(++)](i)), rat VR1 (rVR1) and a human orthologue (hVR1) were pharmacologically characterized with various VR1 ligands. HEK-293 cells, stably expressing rVR1 or hVR1, exhibited dose-dependent increases in [Ca(++)](i) when challenged with capsaicin (EC(50)s congruent with 10 nM). Responses to capsaicin were blocked by the VR1 antagonist capsazepine and were dependent on VR1 expression. Potencies for 10 structurally diverse VR1 agonists revealed rVR1 potencies highly correlated to that of hVR1 (R(2) = 0.973). However, a subset of agonists (tinyatoxin, gingerol, and zingerone) was approximately 10-fold more potent for rVR1 compared to hVR1. Schild analysis for blockade of capsaicin-induced responses by capsazepine was consistent with competitive antagonism, whereas ruthenium red displayed noncompetitive antagonism. Compared to rVR1, hVR1 was more sensitive to blockade by both antagonists. For both rVR1 and hVR1, time-response waveforms elicited by resiniferatoxin increased more gradually compared to other agonists. Tinyatoxin also displayed slow responses with hVR1 but showed rapid responses with rVR1. Thus, FLIPR technology can be used to readily reveal differences between rVR1 and hVR1 pharmacology with respect to potencies, efficacies, and kinetics for several VR1 ligands.  相似文献   

8.
辣椒素是从辣椒中提取出来的一种具有镇痛作用的物质。通过激活感觉神经纤维上的瞬时感受器电位香草酸受体1(transient receptor potential vanilloid 1,TRPV1),释放并消耗大量神经肽物质,使神经细胞对伤害性刺激产生脱敏化反应,进而发挥持久的镇痛作用而不影响运动功能。因而在难治性疼痛类疾病中,辣椒素具有独特的治疗价值。以辣椒素为主要成分的制剂已经在临床治疗中开展应用。特定位点注射辣椒素或其类似物resiniferatoxin可以减轻癌痛患者的疼痛症状。但由于辣椒素的治疗剂量与毒性剂量存在部分重叠,使得其在临床应用中受到一定程度的限制。不同的给药方式和作用部位所产生的作用效果可能不同。为深入了解辣椒素的镇痛作用及作用机制,充分发挥其治疗价值,现从不同给药途径总结近几年来辣椒素镇痛作用的研究成果。  相似文献   

9.
Recently a cDNA clone, vanilloid receptor subtype-1 (VR1), was isolated and found to encode an ion channel that is activated by both capsaicin, the pain producing compound in chili peppers, and by noxious thermal stimuli. Subsequently, two related cDNAs have been isolated, a stretch inactivating channel with mechanosensitive properties and a vanilloid receptor-like protein that is responsive to high temperatures (52-53 degrees C). Here, we report the isolation of a vanilloid receptor 5'-splice variant (VR.5'sv) which differs from VR1 by elimination of the majority of the intracellular N-terminal domain and ankyrin repeat elements. Both VR.5'sv and VR1 mRNA were shown to be expressed in tissues reportedly responsive to capsaicin including dorsal root ganglion, brain, and peripheral blood mononuclear cells. Functional expression of VR.5'sv in Xenopus oocytes and mammalian cells showed no sensitivity to capsaicin, the potent vanilloid resiniferatoxin, hydrogen ions (pH 6.2), or noxious thermal stimuli (50 degrees C). Since VR.5'sv is otherwise identical to VR1 throughout its transmembrane spanning domains and C-terminal region, these results support the hypothesis that the N-terminal intracellular domain is essential for the formation of functional receptors activated by vanilloid compounds and noxious thermal stimuli.  相似文献   

10.
In human embryonic kidney cells over-expressing the human vanilloid receptor type 1 (VR1), palmitoylethanolamide (PEA, 0.5-10 microM) enhanced the effect of arachidonoylethanolamide (AEA, 50 nM) on the VR1-mediated increase of the intracellular Ca2+ concentration. PEA (5 microM) decreased the AEA half-maximal concentration for this effect from 0.44 to 0.22 microM. The PEA effect was not due to inhibition of AEA hydrolysis or adhesion to non-specific sites, since bovine serum albumin (0.01-0.25%) potently inhibited AEA activity, and PEA also enhanced the effect of low concentrations of the VR1 agonists resiniferatoxin and capsaicin. PEA (5 microM) enhanced the affinity of AEA for VR1 receptors as assessed in specific binding assays. These data suggest that PEA might be an endogenous enhancer of VR1-mediated AEA actions.  相似文献   

11.
Agonists of the vanilloid receptor type 1 (VR1), such as capsaicin, induce an analgesic effect following an initial excitatory response. It has been demonstrated that the vanilloid system plays an important role in inflammatory hyperalgesia. In accordance, we show that the VR1 antagonist capsazepine (30 microg; i.pl.) prevented the thermal hyperalgesia induced by carrageenan or complete Freund's adjuvant (CFA) in mice. Furthermore, we studied whether this inflammation-induced activation of the vanilloid system could enhance the analgesic properties of capsaicin. A single administration of capsaicin (10 microg; i.pl.) induced in control mice an analgesic effect that lasted for 2 days. In contrast, in carrageenan-treated animals, the analgesic effect of this dose of capsaicin lasted for 6 days and in CFA-treated mice for 30 days. This prolongation of capsaicin-induced analgesia during inflammation was mediated through VR1 since it was completely blocked by coadministration of capsazepine (10 microg). Licking behavior induced by capsaicin in carrageenan- and CFA-treated mice was greater than in control animals. However, although capsaicin induced a more prolonged analgesia in CFA-treated mice, the licking behavior was greater in the carrageenan-treated group, suggesting that the prolongation of analgesia is independent of the initial nociceptive input. Overall, these results show that the analgesic effects of capsaicin are importantly enhanced during inflammation, supporting the fact that the stimulation of VR1 could perhaps constitute a suitable strategy to avoid inflammatory hyperalgesia.  相似文献   

12.
After 7 years from its cloning, the transient receptor potential vanilloid type-1 (TRPV1) channel remains the sole membrane receptor mediating the pharmacological effects of the hot chilli pepper pungent component, capsaicin, and of the Euphorbia toxin, resiniferatoxin. Yet, this ion channel represents one of the most complex examples of how the activity of a protein can be regulated. Among the several chemicophysical stimuli that can modulate TRPV1 permeability to cations, endogenous lipids appear to play a major role, either as allosteric effectors or as direct agonists, or both. Furthermore, the capability of some mediators, such as the endocannabinoid anandamide, or the eicosanoid precursors 12- and 5-hydroperoxy-eicosatetraenoic acids, to activate TRPV1 receptors provides a striking example of the "site-dependent" and "metabolic" functional plasticity, respectively, typical of bioactive lipids. In this article, the multi-faceted and most recently discovered aspects of TRPV1 regulation are reviewed, with particular emphasis on the interaction between these membrane channels and some lipid molecules.  相似文献   

13.
We have designed, synthesized and evaluated a series of new compounds with the goal to identify potent and selective D(3) ligands. The two most potent and selective new D(3) ligands are compounds 38 and 52, which bind to the D(3) receptors with a K(i) value of <1nM and display a selectivity of 450-494 times over the D(2) receptors and >10,000 times over the D(1) receptors. Both 38 and 52 are full agonists with high potency at the D(3) receptor in a D(3) functional assay.  相似文献   

14.
Vanilloid receptor 1 belongs to the transient receptor potential ion channel family and transduces sensations of noxious heat and inflammatory hyperalgesia in nociceptive neurons. These neurons contain two vanilloid receptor pools, one in the plasma membrane and the other in the endoplasmic reticulum. The present experiments characterize these two pools and their functional significance using calcium imaging and 45Ca uptake in stably transfected cells or dorsal root ganglion neurons. The plasma membrane localized receptor is directly activated by vanilloids. The endoplasmic reticulum pool was demonstrated to be independently activated with 20 microm capsaicin or 1.6 microm resiniferatoxin using a bathing solution containing 10 microm Ruthenium Red (to selectively block plasma membrane-localized receptors) and 100 microm EGTA. We also demonstrate an overlap between the endoplasmic reticulum-localized vanilloid receptor regulated stores and thapsigargin-sensitive stores. Direct depletion of calcium via activation of endoplasmic reticulum-localized vanilloid receptor 1 triggered store operated calcium entry. Furthermore, we found that, in the presence of low extracellular calcium (10(-5) m), either 2 microm capsaicin or 0.1 nm-1.6 microm resiniferatoxin caused a pronounced calcium-induced calcium release in either vanilloid receptor-expressing neurons or heterologous expression systems. This phenomenon may allow new insight into how nociceptive neuron function in response to a variety of nociceptive stimuli both acutely and during prolonged nociceptive signaling.  相似文献   

15.
Liu ZH  Jin WQ  Dai QY  Chen XJ  Zhang HP  Chi ZQ 《Life sciences》2003,73(2):233-241
Compound trans-4-(p-bromophenyl)-4-(dimethylamino)-1-(2-thiophen-2-yl-ethyl)-cyclohexanol (C8813), structurally unrelated to morphine, is a novel analgesic. The present study examined the antinociception, opioid receptor selectivity and in vitro activity of C8813. The antinociceptive activity was evaluated using mouse hot plate and acetic acid writhing tests. In mouse hot plate test, the antinociceptive ED(50) of C8813 was 11.5 microg/kg, being 591 times and 3.4 times more potent than morphine and fentanyl respectively. In mouse writhing test, the antinociceptive ED(50) of C8813 was 16.9 microg/kg, being 55 times and 2.3 times more active than morphine and fentanyl respectively. In the opioid receptor binding assay, C8813 showed high affinity for mu-opioid receptor (K(i) = 1.37 nM) and delta-opioid receptor (K(i) = 3.24 nM) but almost no affinity for kappa-opioid receptor (at 1 microM). In the bioassay, the inhibitory effect of C8813 in the guinea-pig ileum (GPI) was 16.5 times more potent than in the mouse vas deferens (MVD). The inhibitory effects of C8813 in the GPI and MVD could be antagonized by mu-opioid receptor antagonist naloxone and delta-opioid receptor antagonist ICI174,864 respectively. However, the inhibitory effect of C8813 in the rabbit vas deferens was very weak. These results indicated that C8813 was a potent analgesic and a high affinity agonist for the mu- and delta-opioid receptors.  相似文献   

16.
Screening of a pteridine-based compound library led to the identification of compounds exhibiting immunosuppressive as well as anti-inflammatory activity. Optimization afforded a series of 2-amino-4-N-piperazinyl-6-(3,4-dimethoxyphenyl)pteridine analogues. The most potent congeners in this series displayed low nM IC50 values in the Mixed Lymphocyte Reaction (MLR) assay. In addition, these compounds also have potent anti-inflammatory activity as measured in the Tumor Necrosis Factor (TNF) assay.  相似文献   

17.
Ruthenium red as a capsaicin antagonist.   总被引:15,自引:0,他引:15  
R Amann  C A Maggi 《Life sciences》1991,49(12):849-856
Definition of the physiological and pharmacological properties of primary afferent neurons by the use of capsaicin and its analogues (e.g. resiniferatoxin) has represented one of the most active areas of research of the last decade (1-4 for reviews). In the past 3 years many important advancements have been made in this field, dealing with: a) discovery of the capsaicin (or 'vanilloid' receptor (5); b) discovery of capsazepine as a competitive receptor antagonist at the vanilloid receptor (6); c) definition of the cation channel coupled with the vanilloid receptor and the ionic basis for excitation and "desensitization" of primary afferents by capsaicin and related substances (7,8) and d) discovery of ruthenium red as a functional capsaicin antagonist. The aim of the present article is to briefly review the pharmacology of ruthenium red as a capsaicin antagonist and attempting to define the usefulness and the limits of this substance as a tool in sensory neuron research.  相似文献   

18.
Two series of 3-arylsulphonyl-5-arylamino-1,3,4-thiadiazol-2(3H)ones 2 with potential anti-inflammatory and analgesic activity were prepared and tested. Pharmacological results revealed that all the title compounds, endowed with an arylsulphonyl side chain, possess good antalgic activity and fair anti-inflammatory properties. The analgesic profile of the two series, evaluated by the acetic acid writhing test, showed that compounds 2c, 2f and 2h, in particular, were the most active. Structure-activity relationships are briefly discussed.  相似文献   

19.
A series of structurally simple 7-hydroxynaphthalenyl ureas and amides were discovered to be potent ligands of human vanilloid receptor 1 (VR1). 1-(7-Hydroxynaphthalen-1-yl)-3-(4-trifluoromethylbenzyl)urea 5f exhibited nanomolar binding affinity (K(i)=1.0nM) and upon capsaicin challenge, behaved as a potent functional antagonist (IC(50)=4nM). The synthesis and structure-activity relationships (SARs) for the series are described.  相似文献   

20.
A novel non-vanilloid VR1 antagonist consisting of a new vanilloid equivalent exhibits excellent analgesic effects as well as highly potent antagonistic activities in both capsaicin single channel and calcium uptake assays. In addition, the structural requirement for the vanilloid equivalent of the potent VR1 antagonist has also been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号