首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of gender on muscular adaptation of the elbow flexors to 24 wk of heavy resistance training was studied in five male bodybuilders (MB) and five female bodybuilders (FB) who were highly competitive. Muscle cross-sectional area (CSA), fiber area, and fiber number were determined from the biceps brachii, and voluntary elbow flexor torque was obtained at velocities of contraction between 0 and 300 degrees/s. Biceps and flexor CSA was 75.8 and 81% greater, respectively, in MB than in FB, but muscle CSA was not significantly altered by the training program in either group. Because estimated fiber number and the volume density of nonmuscle tissue were similar in MB and FB, most of the gender difference in muscle CSA appeared to be due to greater absolute mean fiber areas in MB (10.51 and 10.68 x 10(3) microns 2 pre- and posttraining, respectively) than in FB (5.33 and 5.96 x 10(3) microns 2 pre- and posttraining, respectively). In neither MB nor FB did fiber type achieve further hypertrophy during the 24-wk training program. These data suggest that the extent of any change in muscle mass or muscle fiber characteristics is minimal after a bodybuilder of either gender has attained a high degree of muscle mass and a highly competitive status.  相似文献   

2.
Eight elite male bodybuilders (MB), five elite female bodybuilders (FB), eight male control (MC), and eight female control recreational weight-trainers (FC) performed maximal elbow flexions on an isokinetic dynamometer at velocities between 1.02 and 5.24 rad.s-1, from which peak torque (PT) was measured. Elbow flexor cross-sectional area (CSA) was measured by computed tomographic scanning. Flexor CSA.lean body mass-1 ratios were greater in MB than in other subject groups. Correlations of PT were positively related to CSA but negatively to CSA.lean body mass-1 and to PT.CSA-1. PT.CSA-1 at low-velocity contractions were greater in MC and FC than in MB and FB groups, suggesting a training effect. The velocity-associated declines in torque between velocities of 1.02 and 5.24 rad.s-1 averaged 28.4 +/- 0.9% and were statistically identical in men and women among the subject groups, suggesting that neither gender nor training had affected this variable.  相似文献   

3.
Eight untrained women (F), 13 untrained men (M), and 11 male bodybuilders (BB) did maximal elbow flexions on an isokinetic dynamometer at velocities of 30, 120, 180, 240, and 300 degrees/s, from which impact torque (IT), peak torque (PT), and work (W) were measured. Biceps and total flexor cross-sectional area (CSA) were measured by computerized tomographic scanning. Muscle fiber area, fiber composition, and collagen volume density were determined from single needle biopsies of biceps brachii. Biceps fiber number was estimated as the ratio of biceps CSA (corrected for connective tissue) to mean fiber area. PT and W decreased at higher velocities in M and BB but not in F; consequently, the correlation between CSA and PT and W was lower at 300 degrees/s (r = 0.58, 0.60) than 30 degrees/s (r = 0.80, 0.79). The ratio of PT to flexor CSA was similar in all groups at 30 degrees/s, whereas F had greater ratios than M and BB at the remaining velocities. F had greater W/CSA ratios than M and BB at all velocities. IT increased at higher velocities in all groups; the increase was greater in F and M than in BB. In contrast to PT and W, the correlation between IT and CSA was greater at 300 degrees/s (r = 0.67) than 30 degrees/s (r = 0.58), and there were no differences among groups in the IT/CSA ratios. Flexor CSA correlated negatively with the ratio of IT, PT, and W to CSA. Muscle fiber composition failed to correlate with any measure of strength. M and BB had greater biceps area, fiber number, and fiber area than F.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The present study examined the effects of training status (endurance exercise or body building) on nitrogen balance, body composition, and urea excretion during periods of habitual and altered protein intakes. Experiments were performed on six elite bodybuilders, six elite endurance athletes, and six sedentary controls during a 10-day period of normal protein intake followed by a 10-day period of altered protein intake. The nitrogen balance data revealed that bodybuilders required 1.12 times and endurance athletes required 1.67 times more daily protein than sedentary controls. Lean body mass (density) was maintained in bodybuilders consuming 1.05 g protein.kg-1.day-1. Endurance athletes excreted more total daily urea than either bodybuilders or controls. We conclude that bodybuilders during habitual training require a daily protein intake only slightly greater than that for sedentary individuals in the maintenance of lean body mass and that endurance athletes require daily protein intakes greater than either bodybuilders or sedentary individuals to meet the needs of protein catabolism during exercise.  相似文献   

5.
Tissue samples were obtained from the vastus lateralis muscle of elite olympic weight and power lifters (OL/PL, n = 6), bodybuilders (BB, n = 7), and sedentary men (n = 7). Enzyme activities of citrate synthase (CS), lactate dehydrogenase (LD), 3-OH-acyl-CoA-dehydrogenase (HAD), and myokinase (MK) were assayed on freeze-dried dissected pools of slow-twitch (ST) and fast-twitch (FT) fiber fragments by fluorometric means. Histochemical analyses were carried out to assess fiber type composition and fiber area. CS and HAD activities were lower (P less than 0.05), and LD and MK were higher (P less than 0.05) in FT than ST fibers in the entire subject pool (n = 20). CS of FT fibers and HAD of ST fibers were lower in athletes (P less than 0.05-0.01) compared with nonathletes, whereas LD of both fiber types was higher (P less than 0.05-0.001) in athletes. CS activity of ST fibers and MK activity of FT fibers were higher (P less than 0.05) in BB compared with OL/PL. FT and ST fiber area was greater (P less than 0.05) in athletes than in nonathletes. BB displayed greater (P less than 0.05) fiber size than OL/PL. FT/ST area was greater (P less than 0.05) in OL/PL than BB. It is suggested that long-term heavy-resistance training results in specific metabolic adaptations of FT and ST fiber types. These changes appear to be influenced by the type of resistance training.  相似文献   

6.
Muscle fiber numbers were estimated in vivo in biceps brachii in 5 elite male bodybuilders, 7 intermediate caliber bodybuilders, and 13 age-matched controls. Mean fiber area and collagen volume density were calculated from needle biopsies and muscle cross-sectional area by computerized tomographic scanning. Contralateral measurements in a subsample of seven subjects indicated the method for estimation of fiber numbers to have adequate reliability. There was a wide interindividual range for fiber numbers in biceps (172,085-418,884), but despite large differences in muscle size both bodybuilder groups possessed the same number of muscle fibers as the group of untrained controls. Although there was a high correlation between average cross-sectional fiber area and total muscle cross-sectional area within each group, many of the subjects with the largest muscles also tended to have a large number of fibers. Since there were equally well-trained subjects with fewer than normal fiber numbers, we interpret this finding to be due to genetic endowment rather than to training-induced hyperplasia. The proportion of muscle comprised of connective and other noncontractile tissue was the same for all subjects (approximately 13%), thus indicating greater absolute amounts of connective tissue in the trained subjects. We conclude that in humans, heavy resistance training directed toward achieving maximum size in skeletal muscle does not result in an increase in fiber numbers.  相似文献   

7.
The present study aimed to examine the effect of pennation angle on the force per cross-sectional area for elbow extensor muscles in strength-trained athletes. A total of 52 male bodybuilders (n = 32) and Olympic weightlifters (n = 20) did maximal isometric elbow extension on an isokinetic dynamometer. Muscle cross-sectional area (CSA) and muscle-fiber pennation angle (PA) of the triceps brachii muscles were measured by ultrasonography. Bodybuilders had significantly greater isometric elbow extension force (F), CSA and PA than weightlifters. The ratio of force to CSA (F/CSA) of bodybuilders was significantly lower than that of weightlifters. A significant positive correlation was observed between CSA and PA in both groups (r = 0.832, P < 0.001, and r = 0.682, P < 0.001, for bodybuilders and weightlifters, respectively). The F/CSA was negatively correlated to PA both for bodybuilders (r = -0.408, P < 0.05) and weightlifters (r = -0.465, P < 0.05). Thus present study indicates that the larger pennation angle is associated with the lower force relative to muscle CSA in strength-trained athletes.  相似文献   

8.
To investigate the event-related profiles of musculoskeletal development in weight-categorized athletes, we measured the cross-sectional areas (CSA) of bone and muscle in the forearm, upper arm, lower leg and thigh, using a B-mode ultrasound apparatus, in college Olympic weightlifters (OWL, n = 19) and wrestlers (WR, n = 17) and untrained men (UM, n = 24), whose body masses were within the range from 55 kg to 78 kg. Both bone and muscle CSA at all sites were significantly correlated to the two-thirds power of fat-free mass (FFM(2/3)) with correlation coefficients of 0.430-40.741 (P < 0.05) and 0.608-0.718 (P < 0.05), respectively. Moreover, there were significant correlations between bone and muscle CSA at all sites (r = 0.664-0.829, P < 0.05). Even when bone and muscle CSA were expressed relative value to FFM(2/3), both OWL and WR showed significantly greater values than UM at all sites except for the lower leg. Furthermore, the comparison of the lean (bone + muscle) CSA ratio from site to site indicated a higher distribution of lean tissues in the upper extremities in OWL and WR compared to UM. While there was no significant difference between the two athlete groups in FFM(2/3), OWL showed significantly larger values than WR in the bone CSA of the upper arm and thigh and in the muscle CSA of the lower leg and thigh. However, lean CSA ratios of the upper extremities to the lower ones were significantly higher in WR than in OWL. Thus, the present results indicated that, compared to UM, OWL and WR had a greater lean tissue CSA in limbs, especially in the upper extremities, even when the difference in FFM was normalized. Moreover, the relative distribution of lean tissues in limbs differed between the two weight-categorized athletes in spite of there being no difference in FFM, which may be attributable to their own training regimens and/or competition style.  相似文献   

9.
The objectives of this study were to investigate the muscle fiber characteristics of the pectoralis major muscle, and its relation to growth performance in the random bred control (RBC) and heavy weight (HW) Japanese quail lines at 42 days of age. The HW line had greater body (232.0 v. 100.2 g, P < 0.001) and pectoralis major muscle (19.0 v. 6.2 g, P < 0.001) weights than the RBC line. Color differences were observed between the superficial and deep regions of the pectoralis major muscle, with the superficial region showing a higher value of lightness than the deep region of the RBC or HW lines (P < 0.001). The percentage of the superficial region in the pectoralis major muscle was higher in the HW line compared with the RBC line (46.2% v. 38.0%, P = 0.017). There were no significant differences in the total fiber number in the superficial and deep regions between the two quail lines (P = 0.718). The HW quail line showed a larger mean fiber cross-sectional area (CSA; 375.5 v. 176.6 μm2, P < 0.001) and type IIA fiber CSA (243.7 v. 131.9 μm2, P < 0.001) than the RBC quail line. The HW line also had greater CSA percentage (60.2% v. 34.2%, P < 0.001) and number percentage (41.6% v. 14.2%, P < 0.001) of type IIB fibers, although there were no significant differences in type IIB fiber CSA between the RBC and HW lines (P = 0.219). Therefore, greater body and muscle weights of the HW line are caused by differences in muscle fiber characteristics, especially the proportion of type IIB fiber and the CSA of type IIA fiber, compared with the RBC line. The results of this study suggest that muscle fiber hypertrophy has more impact on body and muscle weights of the different quail lines than muscle fiber hyperplasia.  相似文献   

10.
We performed two studies to determine the effect of a resistive training program comprised of fast vs. slow isokinetic lengthening contractions on muscle fiber hypertrophy. In study I, we investigated the effect of fast (3.66 rad/s; Fast) or slow (0.35 rad/s; Slow) isokinetic high-resistance muscle lengthening contractions on muscle fiber and whole muscle cross-sectional area (CSA) of the elbow flexors was investigated in young men. Twelve subjects (23.8 +/- 2.4 yr; means +/- SD) performed maximal resistive lengthening isokinetic exercise with both arms for 8 wk (3 days/wk), during which they trained one arm at a Fast velocity while the contralateral arm performed an equivalent number of contractions at a Slow velocity. Before (Pre) and after (Post) the training, percutaneous muscle biopsies were taken from the midbelly of the biceps brachii and analyzed for fiber type and CSA. Type I muscle fiber size increased Pre to Post (P < 0.05) in both Fast and Slow arms. Type IIa and IIx muscle fiber CSA increased in both arms, but the increases were greater in the Fast- vs. the Slow-trained arm (P < 0.05). Elbow flexor CSA increased in Fast and Slow arms, with the increase in the Fast arm showing a trend toward being greater (P = 0.06). Maximum torque-generating capacity also increased to a greater degree (P < 0.05) in the Fast arm, regardless of testing velocity. In study II, we attempted to provide some explanation of the greater hypertrophy observed in study I by examining an indicator of protein remodeling (Z-line streaming), which we hypothesized would be greater in the Fast condition. Nine men (21.7 +/- 2.4 yr) performed an acute bout (n = 30, 3 sets x 10 repetitions/set) of maximal lengthening contractions at Fast and Slow velocities used in the training study. Biopsies revealed that Fast lengthening contractions resulted in more (185 +/- 1 7%; P < 0.01) Z-band streaming per millimeter squared muscle vs. the Slow arm. In conclusion, training using Fast (3.66 rad/s) lengthening contractions leads to greater hypertrophy and strength gains than Slow (0.35 rad/s) lengthening contractions. The greater hypertrophy seen in the Fast-trained arm (study I) may be related to a greater amount of protein remodeling (Z-band streaming; study II).  相似文献   

11.
The purpose of the present study was to investigate the effect of short-term resistance training and detraining on shot put throwing performance. Eleven young healthy subjects with basic shot put skills participated in 14 weeks of resistance training, which was followed by 4 weeks of detraining. Shot put performance in four field tests was measured before (T1) and after (T2) resistance training and after detraining (T3). At the same time points, one repetition maximum (1RM) was measured in squat, bench press, and leg press. Fat-free mass (FFM) was determined with dual x-ray absorptiometry and muscle biopsies obtained from vastus lateralis for the determination of fiber type composition and cross-sectional area (CSA). 1RM strength increased 22-34% (p < 0.01) at T2 and decreased 4-5% (not significantly different) at T3. Shot put performance increased 6-12% (p < 0.05) after training and remained unaltered after detraining. FFM increased at T2 (p < 0.05) but remained unchanged between T2 and T3. Muscle fiber CSA increased 12-18% (p < 0.05) at T2. Type I muscle fiber CSA was not altered after detraining, but type IIa and IIx fiber CSA was reduced 10-12% (p < 0.05). The percentage of type IIx muscle fibers was reduced after training (T1 = 18.7 +/- 4, T2 = 10.4 +/- 1; p < 0.05), and it was increased at T3 compared with T2 (T3 = 13.7 +/- 1; p < 0.05). These results suggest that shot put performance remains unaltered after 4 weeks of complete detraining in moderately resistance-trained subjects. This might be linked to the concomitant reduction of muscle fiber CSA and increase in the percentage of type IIx muscle fibers.  相似文献   

12.
We investigated the effects of the anabolic androgen, oxandrolone, on lean body mass (LBM), muscle size, fat, and maximum voluntary muscle strength, and we determined the durability of effects after treatment was stopped. Thirty-two healthy 60- to 87-yr-old men were randomized to receive 20 mg oxandrolone/day (n = 20) or placebo (n = 12) for 12 wk. Body composition [dual-energy X-ray absorptiometry (DEXA), magnetic resonance imaging, and (2)H(2)O dilution] and muscle strength [1 repetition maximum (1 RM)] were evaluated at baseline and after 12 wk of treatment; body composition (DEXA) and 1-RM strength were then assessed 12 wk after treatment was discontinued (week 24). At week 12, oxandrolone increased LBM by 3.0 +/- 1.5 kg (P < 0.001), total body water by 2.9 +/- 3.7 kg (P = 0.002), and proximal thigh muscle area by 12.4 +/- 8.4 cm(2) (P < 0.001); these increases were greater (P < 0.003) than in the placebo group. Oxandrolone increased 1-RM strength for leg press by 6.7 +/- 6.4% (P < 0.001), leg flexion by 7.0 +/- 7.8% (P < 0.001), chest press by 9.3 +/- 6.7% (P < 0.001), and latissimus pull-down exercises by 5.1 +/- 9.1% (P = 0.02); these increases were greater than placebo. Oxandrolone reduced total (-1.9 +/- 1.0 kg) and trunk fat (-1.3 +/- 0.6 kg; P < 0.001), and these decreases were greater (P < 0.001) than placebo. Twelve weeks after oxandrolone was discontinued (week 24), the increments in LBM and muscle strength were no longer different from baseline (P > 0.15). However, the decreases in total and trunk fat were sustained (-1.5 +/- 1.8, P = 0.001 and -1.0 +/- 1.1 kg, P < 0.001, respectively). Thus oxandrolone induced short-term improvements in LBM, muscle area, and strength, while reducing whole body and trunk adiposity. Anabolic improvements were lost 12 wk after discontinuing oxandrolone, whereas improvements in fat mass were largely sustained.  相似文献   

13.
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training.  相似文献   

14.
Fascicle angle (FA) is suggested to increase as a result of fiber hypertrophy and furthermore to serve as the explanatory link in the discrepancy in the relative adaptations in the anatomical cross-sectional area (CSA) and fiber CSA after resistance training (RT). In contrast to RT, the effects of endurance training on FA are unclear. The purpose of this study was therefore to investigate and compare the longitudinal effects of either progressive endurance training (END, n = 7) or RT (n = 7) in young untrained men on FA, anatomical CSA, and fiber CSA. Muscle morphological measures included the assessment of vastus lateralis FA obtained by ultrasonography and anatomical CSA by magnetic resonance imaging of the thigh and fiber CSA deduced from histochemical analyses of biopsy samples from m. vastus lateralis. Functional performance measures included VO2max and maximal voluntary contraction (MVC). The RT produced increases in FA by 23 ± 8% (p < 0.01), anatomical CSA of the knee extensor muscles by 9 ± 3% (p = 0.001), and fiber CSA by 19 ± 7% (p < 0.05). RT increased knee extensor MVC by 20 ± 5% (p < 0.001). END increased VO2max by 10 ± 2% but did not evoke changes in FA, anatomical CSA, or in fiber CSA. In conclusion, the morphological changes induced by 10 weeks of RT support that FA does indeed serve as the explanatory link in the observed discrepancy between the changes in anatomical and fiber CSA. Contrarily, 10 weeks of endurance training did not induce changes in FA, but the lack of morphological changes from END indirectly support the fact that fiber hypertrophy and FA are interrelated.  相似文献   

15.
Loss of lean body and muscle mass characterizes the acquired immunodeficiency syndrome (AIDS) wasting syndrome (AWS). Testosterone and exercise increase muscle mass in men with AWS, with unclear effects on muscle composition. We examined muscle composition in 54 eugonadal men with AWS who were randomized to 1) testosterone (200 mg im weekly) or placebo and simultaneously to 2) resistance training or no training in a 2 x 2 factorial design. At baseline and after 12 wk, we performed assessments of whole body composition by dual-energy X-ray absorptiometry and single-slice computed tomography for midthigh cross-sectional area and muscle composition. Leaner muscle has greater attenuation. Baseline muscle attenuation correlated inversely with whole body fat mass (r = -0.52, P = 0.0001). This relationship persisted in a model including age, body mass index, testosterone level, viral load, lean body mass, and thigh muscle cross-sectional area (P = 0.02). Testosterone (P = 0.03) and training (P = 0.03) increased muscle attenuation. These data demonstrate that thigh muscle attenuation by computed tomography varies inversely with whole body fat and increases with testosterone and training. Anabolic therapy in these patients increases muscle leanness.  相似文献   

16.
Changes in strength and size of the elbow flexor muscles have been compared during six weeks of isometric strength training in six male and six female subjects. Isometric training of one arm resulted in a significant increase in isometric force (14.5 +/- 5.1%, mean +/- SD, n = 12). No differences were seen in the response of male and female subjects. The extent of the change was similar to that reported for training studies of other muscles, thus refuting the suggestion that the elbow flexors may be especially amenable to training. Biceps and brachialis cross-sectional area (CSA) was measured from mid-upper arm X-ray computerized tomography before and after training. Muscles increased in area (5.4 +/- 3.8%) but this was smaller than, and not correlated with, the increase in strength. The main change in the first six weeks of strength training was therefore an increase in the force generated per unit cross-sectional area of muscle. The arrangement of fibres in the biceps is nearly parallel to the action of the muscle and it is argued that the increase in force per unit cross-sectional area is unlikely to be due to changes in the pennation of the muscle fibres as has been suggested for other muscles.  相似文献   

17.
We tested the hypothesis that the administration of recombinant human growth hormone (rHGH) and exercise would increase lean body mass (LBM) and muscle strength in burned children to a greater extent than rHGH or exercise separately. Children, ages 7-17 yr, with >40% body surface area burned, were randomized into groups. One group (GHEX, n = 10) participated in a 12-wk in-hospital physical rehabilitation program supplemented with an exercise program and received 0.05 mg. kg(-1). day(-1) of rHGH. A second exercising group (SALEX, n = 13) received saline. A third group (GH, n = 10) received a similar dose of rHGH as GHEX and participated in a 12-wk, home-based physical rehabilitation program without exercise. The fourth group (Saline, n = 11) received saline and participated in a 12-wk, home-based physical rehabilitation program without exercise. The mean (+/-SE) percent change in lean body mass after 12 wk was not significantly different between GHEX (9.0 +/- 2.1%), SALEX (5.4 +/- 1.6%), and GH (5.8 +/- 1.8%) groups (P = 0.33). However, the mean percent change in muscle strength was significantly greater in the GHEX (36.2 +/- 5.4%) and SALEX (42.6 +/- 10.0%) groups than in the GH (-7.4 +/- 4.7%) or Saline (6.7 +/- 4.4%) groups (P = 0.008). In summary, rHGH GHEX, SALEX, and GH alone produced similar improvements in LBM. However, muscle strength was only increased via exercise.  相似文献   

18.

Background

The impact of multiple sclerosis (MS) on skeletal muscle characteristics, such as muscle fiber cross sectional area (CSA), fiber type proportion, muscle strength and whole muscle mass, remains conflicting.

Methods

In this cross sectional study, body composition and muscle strength of the quadriceps were assessed in 34 MS (EDSS: 2.5±0.19) patients and 18 matched healthy controls (HC). Hereafter a muscle biopsy (m.vastus lateralis) was taken.

Results

Compared to HC, mean muscle fiber CSA of all fibers, as well as CSA of type I, II and IIa fibers were smaller and muscle strength of the quadriceps was lower in MS patients. Whole body composition was comparable between groups. However, compared to HC, the biopsied leg tended to have a higher fat percentage (p = 0.1) and a lower lean mass (p = 0.06) in MS patients.

Conclusion

MS seems to negatively influence skeletal muscle fiber CSA, muscle strength and muscle mass of the lower limbs of mildly affected MS patients. This emphasises the need for rehabilitation programs focusing on muscle preservation of the lower limb.

Trial Registration

ClinicalTrials.gov NCT01845896  相似文献   

19.
The present study was designed to determine the contribution of weight bearing to the adaptations of the plantaris (PL) to synergist removal. PL from female rats were exposed to 28 days of a simultaneous condition of synergist ablation and hindlimb suspension. At 28 days, contractile responses and morphological measures were obtained and compared with muscles that either had synergists intact or were weight bearing or a combination of both. Synergist ablation prolonged PL maximum isometric twitch tension (Pt), time to peak tension (12%), and one-half relaxation time (12%); increased Pt (26%), maximum isometric tetanic tension (Po, 44%), fatigue resistance (FI, 42%), and fast fiber cross-sectional area (FT CSA, 20%); and decreased Pt/Po (13%) over nonablation counterparts. Suspension decreased PL Pt (26%), Po (26%), rest length (16%), FT CSA (31%), and slow-twitch fiber (ST) number (24%) but increased FI (75%) over weight-bearing counterparts. PL from weight-bearing animals were heavier than from suspended animals, and the extent of this response was greatest after synergist removal. Whole muscle and ST CSA and ST area contribution were greater only in weight-bearing synergist ablation muscles. Daily weight bearing (4 h) in synergist ablation hindlimb suspension groups caused PL weights and ST expressions to be halfway between 24-h suspension and 24-h weight-bearing groups. Our results suggest that weight bearing is not essential to the induction of several adaptations associated with synergist ablation but is required to cause the large muscle mass and ST expression characteristic of this model.  相似文献   

20.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号