首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

2.
In Escherichia coli, the intrinsic levels of resistance to multiple antimicrobial agents are produced through expression of the three-component multidrug efflux system AcrAB-TolC. AcrB is a proton-motive-force-dependent transporter located in the inner membrane, and AcrA and TolC are accessory proteins located in the periplasm and the outer membrane, respectively. In this study, these three proteins were expressed separately, and the interactions between them were analyzed by chemical cross-linking in intact cells. We show that AcrA protein forms oligomers, most probably trimers. In this oligomeric form, AcrA interacts specifically with AcrB transporter independently of substrate and TolC.  相似文献   

3.
AcrAB-TolC is a constitutively expressed, tripartite efflux transporter complex that functions as the primary resistance mechanism to lipophilic drugs, dyes, detergents, and bile acids in Escherichia coli. TolC is an outer membrane channel, and AcrA is an elongated lipoprotein that is hypothesized to span the periplasm and coordinate efflux of such substrates by AcrB and TolC. AcrD is an efflux transporter of E. coli that provides resistance to aminoglycosides as well as to a limited range of amphiphilic agents, such as bile acids, novobiocin, and fusidic acid. AcrB and AcrD belong to the resistance nodulation division superfamily and share a similar topology, which includes a pair of large periplasmic loops containing more than 300 amino acid residues each. We used this knowledge to test several plasmid-encoded chimeric constructs of acrD and acrB for substrate specificity in a marR1 DeltaacrB DeltaacrD host. AcrD chimeras were constructed in which the large, periplasmic loops between transmembrane domains 1 and 2 and 7 and 8 were replaced with the corresponding loops of AcrB. Such constructs provided resistance to AcrB substrates at levels similar to native AcrB. Conversely, AcrB chimeras containing both loops of AcrD conferred resistance only to the typical substrates of AcrD. These results cannot be explained by simply assuming that AcrD, not hitherto known to interact with AcrA, acquired this ability by the introduction of the loop regions of AcrB, because (i) both AcrD and AcrA were found, in this study, to be required for the efflux of amphiphilic substrates, and (ii) chemical cross-linking in intact cells efficiently produced complexes between AcrD and AcrA. Since AcrD can already interact with AcrA, the alterations in substrate range accompanying the exchange of loop regions can only mean that substrate recognition (and presumably binding) is determined largely by the two periplasmic loops.  相似文献   

4.
Drug efflux pumps of Gram-negative bacteria are tripartite export machineries located in the bacterial envelopes contributing to multidrug resistance. Protein structures of all three components have been determined, but the exact interaction sites are still unknown. We could confirm that the hybrid system composed of Pseudomonas aeruginosa channel tunnel OprM and the Escherichia coli inner membrane complex, formed by adaptor protein (membrane fusion protein) AcrA and transporter AcrB of the resistance nodulation cell division (RND) family, is not functional. However, cross-linking experiments show that the hybrid exporter assembles. Exchange of the hairpin domain of AcrA with the corresponding hairpin from adaptor protein MexA of P. aeruginosa restored the functionality. This shows the importance of the MexA hairpin domain for the functional interaction with the OprM channel tunnel. On the basis of these results, we have modeled the interaction of the hairpin domain and the channel tunnel on a molecular level for AcrA and TolC as well as MexA and OprM, respectively. The model of two hairpin docking sites per TolC protomer corresponding with hexameric adaptor proteins was confirmed by disulfide cross-linking experiments. The role of this interaction for functional efflux pumps is discussed.  相似文献   

5.
The AcrAB system of Escherichia coli is an intrinsic efflux protein with a broad substrate specificity. AcrA was thought to be localized in the periplasmic space, and to be linked to AcrB and TolC. The AcrAB-TolC system directly exports diverse substrates from the cell interior to the medium. In this study, we have determined the cellular localization of AcrA. By using the osmotic shock method, sucrose density gradient centrifugation, urea washing and Western blotting analysis, we reveal that AcrA is a peripheral inner membrane protein. A mutant plasmid encoding both the AcrA-TetBCt fusion protein and the AcrB-His fusion protein was constructed. Membrane vesicles prepared from cells expressing these fusion proteins were solubilized and AcrB-His was immunoprecipitated with an anti-polyhistidine antibody. After SDS-PAGE, Western blotting was performed with anti-TetBCt antiserum, resulting in the appearance of a 40 kDa band, indicating that AcrA co-precipitated with AcrB. Next we performed site-directed chemical labeling of Cys-introduced mutants of AcrA with [(14)C]N-ethylmaleimide. As judged from the labeling pattern and the molecular mass shift, the N-terminus of AcrA was removed and the mature protein is on the periplasmic surface. On the other hand, C25A mutants retained the N-terminal signal sequence on the cytoplasmic side of the membrane. We conclude that AcrA exists as a complex with AcrB on the periplasmic surface of the inner membrane after removal of the signal sequence.  相似文献   

6.
AcrAB-TolC is the major, constitutively expressed efflux protein complex that provides resistance to a variety of antimicrobial agents in Escherichia coli. Previous studies showed that AcrA, a periplasmic protein of the membrane fusion protein family, could function with at least two other resistance-nodulation-division family pumps, AcrD and AcrF, in addition to its cognate partner, AcrB. We found that, among other E. coli resistance-nodulation-division pumps, YhiV, but not MdtB or MdtC, could also function with AcrA. When AcrB was assessed for the capacity to function with AcrA homologs, only AcrE, but not YhiU or MdtA, could complement an AcrA deficiency. Since AcrA could, but YhiU could not, function with AcrB, we engineered a series of chimeric mutants of these proteins in order to determine the domain(s) of AcrA that is required for its support of AcrB function. The 290-residue N-terminal segment of the 398-residue protein AcrA could be replaced with a sequence coding for the corresponding region of YhiU, but replacement of the region between residues 290 and 357 produced a protein incapable of functioning with AcrB. In contrast, the replacement of residues 357 through 397 of AcrA still produced a functional protein. We conclude that a small region of AcrA close to, but not at, its C terminus is involved in the interaction with its cognate pump protein, AcrB.  相似文献   

7.
AcrAB-TolC from Escherichia coli is a multidrug efflux complex capable of transenvelope transport. In this complex, AcrA is a periplasmic membrane fusion protein that establishes a functional connection between the inner membrane transporter AcrB of the RND superfamily and the outer membrane channel TolC. To gain insight into the mechanism of the functional association between components of this complex, we replaced AcrB with its close homolog MexB from Pseudomonas aeruginosa. Surprisingly, we found that AcrA is promiscuous and can form a partially functional complex with MexB and TolC. The chimeric AcrA-MexB-TolC complex protected cells from sodium dodecyl sulfate, novobiocin, and ethidium bromide but failed with other known substrates of MexB. We next identified single and double mutations in AcrA and MexB that enabled the complete functional fit between AcrA, MexB, and TolC. Mutations in either the α-helical hairpin of AcrA making contact with TolC or the β-barrel domain lying on MexB improved the functional alignment between components of the complex. Our results suggest that three components of multidrug efflux pumps do not associate in an “all-or-nothing” fashion but accommodate a certain degree of flexibility. This flexibility in the association between components affects the transport efficiency of RND pumps.  相似文献   

8.
Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 ?-80 ?) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology.  相似文献   

9.
Genetic data have suggested that TolC, AcrA and AcrB constitute a major antibiotic efflux system in Escherichia coli. Through reversion analysis of an unstable and antibiotic-sensitive TolC mutant (TolCP246R,S350C), we isolated extragenic suppressors that mapped within the acrRAB loci. DNA sequence analysis revealed that 18 isolates contained 10 different missense mutations within the acrA gene, whereas a single isolate had a missense mutation within the acrR gene, which codes for the acrAB repressor. Besides reversing the hypersensitivity phenotype of TolCP246R,S350C, AcrA and AcrR alterations elevated the mutant TolC protein level, thus indicating that the mechanism of suppression involves the stabilization of an unstable mutant TolC protein. Eight of the 10 AcrA alterations were clustered in the 202-265 region of the mature protein, whereas the other two suppressors affected residues 30 and 146. Based on the recently solved crystal structure of MexA, an AcrA counterpart from Pseudomonas aeruginosa, the regions encompassing residues 30 and 202-265 constitute the alpha+beta-domain of AcrA (MexA), whereas that of 146 form the alpha-domain. The data suggest that residues of these two AcrA domains either directly or indirectly influence interactions with TolC. Curiously, the stability of three mutant AcrA proteins, bearing an L222Q, L222R or P265R substitution, became dependent on the presence of either wild-type or mutant TolC. This dependence of the mutant AcrA proteins on TolC further supported the notion of a direct physical interaction between these two proteins. Because a mutation in acrR or acrAB expression from a multicopy plasmid also suppressed the TolCP246R,S350C defects, it indicated that wild-type AcrA when produced in high levels presumably establishes similar interactions with the mutant TolC protein as do the suppressor forms of AcrA produced from the chromosomal copy. The AcrA-mediated suppression of mutant TolC phenotypes and the stabilization of mutant TolC protein were dependent on AcrB, reflecting the existence of a functional complex between TolC and AcrAB in vivo.  相似文献   

10.
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.  相似文献   

11.
The overexpression of multidrug efflux pumps is an important mechanism of clinical resistance in Gram-negative bacteria. Recently, four small molecules were discovered that inhibit efflux in Escherichia coli and interact with the AcrAB-TolC efflux pump component AcrA. However, the binding site(s) for these molecules was not determined. Here, we combine ensemble docking and molecular dynamics simulations with tryptophan fluorescence spectroscopy, site-directed mutagenesis, and antibiotic susceptibility assays to probe binding sites and effects of binding of these molecules. We conclude that clorobiocin and SLU-258 likely bind at a site located between the lipoyl and β-barrel domains of AcrA.  相似文献   

12.
Physical properties of thylakoid membranes isolated from barley were investigated by the electron paramagnetic resonance (EPR) spin labeling technique. EPR spectra of stearic acid spin labels 5-SASL and 16-SASL were measured as a function of temperature in secondary barley leaves during natural and dark-induced senescence. Oxygen transport parameter was determined from the power saturation curves of the spin labels obtained in the presence and absence of molecular oxygen at 25 °C. Parameters of EPR spectra of both spin labels showed an increase in the thylakoid membrane fluidity during senescence, in the headgroup area of the membrane, as well as in its interior. The oxygen transport parameter also increased with age of barley, indicating easier diffusion of oxygen within the membrane and its higher fluidity. The data are consistent with age-related changes of the spin label parameters obtained directly by EPR spectroscopy. Similar outcome was also observed when senescence was induced in mature secondary barley leaves by dark incubation. Such leaves showed higher membrane fluidity in comparison with leaves of the same age, grown under light conditions. Changes in the membrane fluidity of barley secondary leaves were compared with changes in the levels of carotenoids (car) and proteins, which are known to modify membrane fluidity. Determination of total car and proteins showed linear decrease in their level with senescence. The results indicate that thylakoid membrane fluidity of barley leaves increases with senescence; the changes are accompanied with a decrease in the content of car and proteins, which could be a contributing factor.  相似文献   

13.
In Gram-negative bacteria, type I protein secretion systems and tripartite drug efflux pumps have a periplasmic membrane fusion protein (MFP) as an essential component. MFPs bridge the outer membrane factor and an inner membrane transporter, although the oligomeric state of MFPs remains unclear. The most characterized MFP AcrA connects the outer membrane factor TolC and the resistance-nodulation-division-type efflux transporter AcrB, which is a major multidrug efflux pump in Escherichia coli. MacA is the periplasmic MFP in the MacAB-TolC pump, where MacB was characterized as a macrolide-specific ATP-binding-cassette-type efflux transporter. Here, we report the crystal structure of E. coli MacA and the experimentally phased map of Actinobacillus actinomycetemcomitans MacA, which reveal a domain orientation of MacA different from that of AcrA. Notably, a hexameric assembly of MacA was found in both crystals, exhibiting a funnel-like structure with a central channel and a conical mouth. The hexameric MacA assembly was further confirmed by electron microscopy and functional studies in vitro and in vivo. The hexameric structure of MacA provides insight into the oligomeric state in the functional complex of the drug efflux pump and type I secretion system.  相似文献   

14.
Conformational flexibility in the multidrug efflux system protein AcrA   总被引:9,自引:0,他引:9  
Intrinsic resistance to multiple drugs in many gram-negative bacterial pathogens is conferred by resistance nodulation cell division efflux pumps, which are composed of three essential components as typified by the extensively characterized Escherichia coli AcrA-AcrB-TolC system. The inner membrane drug:proton antiporter AcrB and the outer membrane channel TolC export chemically diverse compounds out of the bacterial cell, and require the activity of the third component, the periplasmic protein AcrA. The crystal structures of AcrB and TolC have previously been determined, and we complete the molecular picture of the efflux system by presenting the structure of a stable fragment of AcrA. The AcrA fragment resembles the elongated sickle shape of its homolog Pseudomonas aeruginosa MexA, being composed of three domains: beta-barrel, lipoyl, and alpha-helical hairpin. Notably, unsuspected conformational flexibility in the alpha-helical hairpin domain of AcrA is observed, which has potential mechanistic significance in coupling between AcrA conformations and TolC channel opening.  相似文献   

15.
This paper provides the biochemical evidence for physical interactions between the outer membrane component, TolC, and the membrane fusion protein component, AcrA, of the major antibiotic efflux pump of Escherichia coli. Cross-linking between TolC and AcrA was independent of the presence of any externally added substrate of the efflux pump or of the pump protein, AcrB. The biochemical demonstration of a TolC-AcrA interaction is consistent with genetic studies in which extragenic suppressors of a mutant TolC strain were found in the acrA gene.  相似文献   

16.
M Lee  SY Jun  BY Yoon  S Song  K Lee  NC Ha 《PloS one》2012,7(7):e40460
The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA). In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette)-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.  相似文献   

17.
Periplasmic membrane fusion proteins (MFPs) are essential components of multidrug efflux pumps and type I protein secretion systems of gram-negative bacteria. Located in the periplasm, MFPs function by creating a physical link between inner membrane transporters and outer membrane channels. The most conserved sequence of MFPs is located in their distal C-terminal domain. However, neither the structure nor the function of this domain is known. In this study, we investigated the structural and functional role of the C-terminal domain of Escherichia coli AcrA, a periplasmic component of the multidrug efflux pump AcrAB-TolC. Using trypsin proteolysis, we identified the proteolytically labile sites in the C-terminal domain (amino acid residues 315 to 397) of AcrA in vitro. We next used these sites as a map to evaluate the structural integrity of this domain of AcrA inside the periplasm. We found that the C-terminal domain of AcrA is protected from trypsin when the tripartite efflux pump AcrAB-TolC is assembled. In contrast, this domain remains proteolytically labile in cells producing only one of the AcrB or TolC components of the complex. Site-directed mutagenesis of 12 highly conserved amino acid residues of the C-terminal domain of AcrA showed that a single G363C substitution dramatically impairs the multidrug efflux activity of AcrAB-TolC. The G363C mutant interacts with both AcrB and TolC but fails to properly assemble into a functional complex. We conclude that the C-terminal domain of AcrA plays an important role in the assembly and function of AcrAB-TolC efflux pump.AcrA, the multidrug efflux protein from Escherichia coli, is the best-characterized member of the membrane fusion protein (MFP) family (24). Periplasmic AcrA associates with the inner-membrane transporter AcrB, belonging to the RND superfamily of proteins, and the outer-membrane factor TolC (22, 23). Together, the three components form a transenvelope multidrug efflux pump responsible for the high levels of intrinsic as well as acquired antibiotic resistance of E. coli.AcrA is anchored into the inner membrane by N-terminal lipid modification. However, genetic complementation studies showed that the presence of the lipid moiety is not required for AcrA function (14, 24). Structural studies of the proteolytically stable core of AcrA (amino acid [aa] residues 46 to 312) and of whole-length MexA, a homologous protein from Pseudomonas aeruginosa, showed that these proteins have modular structures (Fig. (Fig.1A).1A). They comprise the α-helical hairpin, the lipoyl-binding domain, and the α-β-barrel domain (2, 9, 14). Mutagenesis and chemical cross-linking studies identified the α-helical hairpin of AcrA as a TolC-binding domain, whereas the α-β-barrel domain was proposed to bind AcrB (6, 11, 12, 16). Surprisingly, in isothermal calorimetry experiments, the core fragment of AcrA without its C-terminal domain (C-domain) was able to bind neither AcrB nor TolC (23). In contrast, the whole-length AcrA interacted with both components. This result suggested that the C-domain of AcrA might be important for these interactions. In crystal structures, however, the C-domains of AcrA and MexA were not resolved, and their structures remain unknown.Open in a separate windowFIG. 1.Proteolytic profiles of AcrAhis in vitro and in vivo. (A) Schematic representation of the secondary structure of AcrA. The unique N-terminal Cys25, which is lipid modified after processing in the periplasm, is shown with an arrow. Positions of amino acid residues that form the α-β-barrel, lipoyl-binding, and α-helical hairpin domains are indicated. AcrA residues cleaved by trypsin are indicated by arrowheads. The 28.9-kDa (K46-R315) core and the 26.5-kDa fragment (K46-R294) are also indicated. (B) Purified AcrAhis (final concentration, 1.95 μM) was digested with trypsin (final concentration, 0.10 μM) at 37°C. Aliquots (10 μl) were taken at different time points, and reactions were terminated by boiling in the SDS sample buffer for 5 min. Tryptic fragments were resolved by SDS-PAGE and analyzed by silver nitrate staining. Minor fragments in the untreated control (0 min) are contaminants that copurify with AcrAhis. Lane M, molecular marker. (C) Proteolytic profiles of AcrAhis in E. coli AG100AX cells carrying pAhis and pAhisB plasmids. After treatment with increasing concentrations of trypsin for 60 min at 37°C, the whole-cell proteins were resolved by SDS-PAGE and analyzed by immunoblotting with a polyclonal anti-AcrA antibody. Masses of tryptic fragments of the C-domain of AcrAhis identified by mass spectrometry and by mobility in SDS-PAGE are indicated. O.D., optical density as determined by absorbance at 600 nm.The alignment of sequences of highly diverse MFPs from both gram-negative and gram-positive bacteria showed that amino acid sequences of the C-domains are conserved among members of the MFP family (4). In addition, several studies suggested that this region is important for the function of AcrA. The deletion mutant of AcrA lacking 85 C-terminal aa residues is poorly expressed and nonfunctional in multidrug efflux (14). The replacement of aa 290 to 357 of AcrA with an analogous region of YhiU disrupted AcrA function possibly because of the loss of interaction with the AcrB transporter (5). Random mutagenesis of MexA identified C-terminal amino acid residues as important for MexA oligomerization and interaction with MexB (16, 17).In this study, we identified proteolytically labile sites in the C-domain (aa 315 to 397) of the purified AcrA and compared the accessibility of these sites to that in free AcrA and when engaged in the bipartite and tripartite AcrA, AcrB, and TolC interactions in vivo. We found that the assembly of the AcrAB-TolC complex, but not bipartite AcrA-AcrB and AcrA-TolC interactions, protects the C-domain of AcrA from proteolytic digestion. This result suggested that this domain of AcrA interacts with AcrB, TolC, or both. The functional significance of the C-domain was confirmed by site-directed mutagenesis. A single G363C substitution significantly impairs the multidrug efflux activity of AcrAB-TolC.  相似文献   

18.
Kroncke BM  Horanyi PS  Columbus L 《Biochemistry》2010,49(47):10045-10060
Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.  相似文献   

19.
Drugs and certain proteins are transported across the membranes of Gram-negative bacteria by energy-activated pumps. The outer membrane component of these pumps is a channel that opens from a sealed resting state during the transport process. We describe two crystal structures of the Escherichia coli outer membrane protein TolC in its partially open state. Opening is accompanied by the exposure of three shallow intraprotomer grooves in the TolC trimer, where our mutagenesis data identify a contact point with the periplasmic component of a drug efflux pump, AcrA. We suggest that the assembly of multidrug efflux pumps is accompanied by induced fit of TolC driven mainly by accommodation of the periplasmic component.  相似文献   

20.
L W Fung  M S Ostrowski 《Life sciences》1984,35(20):2071-2078
Our earlier spin label electron paramagnetic resonance (EPR) studies of hereditary spherocytosis (HS) erythrocyte revealed the existence of structural alteration(s) when the membrane is subjected to heat stress. We have now used saturation transfer EPR to show restricted motion in membrane proteins even without subjecting membrane to stress. The abnormal motional behavior is amplified when membranes are incubated at 47 degrees C and is readily detectable by conventional EPR. Gel electrophoresis and lipid assays show that proteins but not lipids are released upon heating. Thus, the more restricted motions in HS membranes may be due to a different membrane protein organization, ultimately resulting in the abnormal morphology of HS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号