首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the investigation of the parental origin and mode of formation of the two isochromosomes, i(2p) and i(2q), detected in a healthy adult male. Conventional cytogenetic analysis revealed the proband's lack of structurally normal chromosomes 2, these being replaced by an i(2p) and an i(2q). Investigation of the parental origin of the isochromosomes revealed a paternal origin of the i(2p) chromosome and a maternal origin of the i(2q) chromosome. Thus, the formation of both isochromosomes, or at least of the paternal i(2p), appears to have occurred postzygotically. Interestingly, whilst a paternal isodisomy was observed for the entire 2p, maternal heterodisomy was detected for two segments of 2q, separated by a segment showing isodisomy. The results are indicative of an initial error (non-disjunction or i(2q) formation) concerning the maternal chromosomes 2 during meiosis I, which likely favored the subsequent mitotic recombination event resulting in the presence of two isochromosomes. To the best of our knowledge this is the first case of an initial meiotic error, followed by postzygotic trisomy rescue through the formation of isochromosomes, resulting in a normal phenotype. A prenatal detection, by cytogenetic and molecular analysis, of such chromosome abnormality would have led to the incorrect conclusion of a most likely poor prognosis for the fetus.  相似文献   

2.
Uniparental disomy for chromosome 7 has been described previously in two individuals with cystic fibrosis. Here, we describe a third case that was discovered because the proband was homozygous for a mutation in the COL1A2 gene for type I procollagen, although his mother was heterozygous and his father did not have the mutation. Phenotypically, the proband was similar to the two previously reported cases with uniparental disomy for chromosome 7, in that he was short in stature and growth retarded. Paternity was assessed with five polymorphic markers. Chromosome 7 inheritance in the proband was analyzed using 12 polymorphic markers distributed along the entire chromosome. Similar analysis of the proband's two brothers established the phase of the alleles at the various loci, assuming minimal recombination. The proband inherited only maternal alleles at five loci and was homozygous at all loci examined, except one. He was heterozygous for an RFLP at the IGBP-1 locus at 7p13-p12. The results suggest that the isodisomy was not complete because of a recombination event involving the proximal short arms of two maternal chromosomes. In addition, the phenotype of proportional dwarfism in the proband suggests imprinting of one or more growth-related genes on chromosome 7.  相似文献   

3.
Maternal isodisomy for chromosome 7 was observed in a 4-year-old cystic fibrosis patient with very short stature. In an examination of 11 DNA polymorphisms spanning the entire length of chromosome 7, no paternal contribution could be shown in seven informative loci. Paternity was examined with probes for five polymorphic loci on the Y chromosome, for the pseudo beta-globin locus on chromosome 11 and by Jeffreys's hypervariable probes. The results with the latter gave a probability of 3.7 x 10(-9) for nonpaternity. Chromosomal examination revealed a centromeric heteromorphism of chromosome 7 in the mother, for which the proband was homozygous. Isodisomy of the patient was thus shown for the entire length of a maternal chromosome 7. The mechanisms leading to this isodisomy involve at least two events of abnormal cell division, events that may be meiotic, postzygotic, or both. This proband is the second reported maternal isodisomy; both were detected through homozygosity for CF. Both patients had short stature, which could have been caused by parental imprinting, since similar results have been observed in isodisomic mice. Homozygosity due to uniparental descent in man should be kept in mind as a mechanism for recessive disorders, especially for chromosome 7.  相似文献   

4.
Uniparental disomy for maternal chromosome 7 has been described in three patients with recessive disorders. Short stature in each of these patients has been explained by the effect of imprinting of growth-related genes on maternal chromosome 7. Alternatively, although less likely, all these patients may be homozygous for a rare recessive mutation. Here we report both paternal isodisomy for chromosome 7 and normal growth in a patient with a recessive disorder, congenital chloride diarrhea. She had inherited only paternal alleles at 10 loci and was homozygous for another 10 chromosome 7 loci studied. Her physical status and laboratory tests were normal except for a mild high-frequency sensorineural hearing loss. As the patient has normal stature, it is likely that the paternal chromosome 7 lacks the suggested maternal imprinting effect on growth. Paternal isodisomy for human chromosome 7 may have no phenotypic effect on growth.  相似文献   

5.
We report a five-year-old girl who has been clinically diagnosed as Joubert syndrome. Her cytogenetic analysis showed 46,XX,der(2)add(2q37) karyotype. Cytogenetic analysis of her mother and maternal grandmother revealed a karyogram designated as 46,X,t (X;2)(p11.2;q37). The proband's derivative chromosome was further confirmed to be a translocation chromosome 2 carrying segments from chromosome X, which originated from a segregation event of the maternal grandmother's balanced translocation passed on as a balanced translocation to the proband's mother either. So far, a number of candidate genes including EN1 on 2q were analyzed for Joubert syndrome. Based on our proband's abnormal karyotype, we suggest that further mapping studies for the syndrome should also be directed towards the chromosome X segments present on the derivative chromosome 2 of our proband.  相似文献   

6.
This paper describes a molecular investigation of a woman with an apparent large pericentric inversion of chromosome 5, inv(5)(p14;q35), and one normal chromosome 5 and her child, who was born with cri-du-chat syndrome. The four chromosome 5 homologs from the proband and his mother were isolated in somatic cell hybrids, and their haplotypes were determined at nine loci polymorphic for restriction enzyme sites. The deleted chromosome in the proband was shown to carry alleles from both maternal homologs, verifying molecularly that a meiotic recombination event in the mother gave rise to her son's deleted chromosome 5. The single crossover was presumably near the centromere.  相似文献   

7.
Summary The largest class of de novo chromosomal rearrangements in Down syndrome are rea(21q21q). Classically, these rearrangements have been termed Robertsonian translocations, implying an attachment of two different chromosome 21 homologues. Additionally, a Robertsonian translocation between two chromosomes 21 cannot be distinguished from an isochromosome composed of genetically identical arms by cytogenetic analyses. Therefore, we have used molecular techniques to differentiate between true Robertsonian translocations and isochromosomes. Samples were obtained from 12 probands, ascertained for de novo rearrangements between homologous chromosomes 21 [11 rea(21q21q) and 1 rea (21;21)(q22;q22)], their parents (n = 24) and available siblings (n = 7). The parental origins of the de novo rearrangements were assigned using molecular and cytogenetic analyses. Although not statistically significant, there was a two-fold increase in the number of paternally derived de novo rearrangements (n = 8) as compared with maternally derived rearrangements (n = 4). To distinguish between rob(21q21q) and i(21q), we used restriction fragment length polymorphisms (RFLPs) spanning the length of chromosome 21. Using all informative and partially informative RFLPs, we used the method of maximum likelihood to assign the most likely rearrangement definition (i or rob) and parental origin in each family. The maximum likelihood estimates indicated that all rearrangements tested (n = 8) were isochromosomes. C-banding revealed two centromeres in three cases indicating that a U-type exchange occurred between sister chromatids in these rearrangements. Our results suggest that the majority of de novo rea(21q21q) are isochromosomes derived from a single parental chromosome 21.  相似文献   

8.
Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted.  相似文献   

9.
Summary High-resolution chromosome analysis of a 19-year-old female proband with syndromic intrahepatic ductular hypoplasia (Alagille syndrome, AWS) revealed an interstitial deletion of chromosome 20p with breakpoints provisionally located in or close to p11.22 and p12.2. Southern blots from digests of DNA of the proband and her chromosomally normal parents were hybridized with the human DNA probes pR12.21, HuPrPcDNA2, and pDS6-SgI, which have been mapped to the region 20 (p12-pter), and rehybridized with the F IX probe for calibration. Comparing the hybridization signals of the normally sized DNA fragments of the familiy, we found no evidence for loss of any of the three tested distal chromosome 20p loci in our proband. Furthermore, in situ hybridization with HuPrPcDNA2 revealed a specific accumulation of grains at or around the faint distal G band suspected to represent all or most of band p12.3 of the proband's deleted 20p and at p12 of the normal chromosome 20. Thus the AWS of our proband is associated with an interstitial deletion that preserved the three tested distal loci on 20p. Since nine further reported cases of 20p deletion are clinically similar, we propose AWS as a further contiguous gene syndrome and assign it to an approximately 8-Mb-large chromosome 20p segment (provisionally, p11.23–p12.1).  相似文献   

10.
An 8-year-old boy presenting with hypotonia, moderate mental retardation, developmental delay, and psychomotor retardation is reported. Magnetic resonance imaging of the brain at age 3 years revealed a Dandy-Walker variant. Cytogenetic analysis of the peripheral blood revealed a derivative chromosome 12 with unknown additional material attached to the distal region of the long arm of chromosome 12. The parental karyotypes were normal. Spectral karyotyping (SKY) using the 24-color SKY probes and fluorescence in situ hybridization (FISH) using the specific 7p, 7q, 12p, and 12q telomeric probes confirmed a duplication of distal 7p and a deletion of terminal 12q. The karyotype of the proband was designated as 46,XY.ish der(12)t(7;12) (p21.2;q24. 33)(SKY+, 7pTEL+, 12qTEL-). The present case provides evidence for the association of partial trisomy 7p (7p21.2-->pter) and partial monosomy 12q (12q24.33-->qter) with a cerebellar malformation and the usefulness of SKY and FISH in the identification of a de novo aberrant chromosome resulting from an unbalanced translocation.  相似文献   

11.
Paternal isodisomy for chromosome 5 was detected in a 2-year-old boy with type III spinal muscular atrophy (SMA), an autosomal recessive degenerative disorder of alpha motor neurons, known to map to 5q11.2-13.3. Examination of 17 short-sequence repeat polymorphisms spanning 5p15.1-15.3 to 5q33.3-qter produced no evidence of maternally inherited alleles. Cytogenetic analysis revealed a normal male karyotype, and FISH with probes closely flanking the SMA locus confirmed the presence of two copies of chromosome 5. No developmental abnormalities, other than those attributable to classical childhood-onset SMA, were present. While the absence of a maternally derived chromosome 5 could have produced the symptoms of SMA through the mechanism of genomic imprinting, the lack of more global developmental abnormalities would be unusual. Paternal transmission of two copies of a defective gene at the SMA locus seems to be the most likely cause of disease, but proof of this will have to await the identification of the SMA gene. While uniparental isodisomy is a rare event, it must be considered as a possible mechanism involved in SMA when conducting prenatal testing and counseling for this disorder.  相似文献   

12.
A 36-year-old normal healthy female was karyotyped because all of her five pregnancies had terminated in spontaneous abortions during the first 3 mo. Cytogenetic investigation disclosed a female karyotype with isochromosomes of 2p and 2q replacing the two normal chromosomes 2. Her husband and both of her parents had normal karyotypes. Molecular studies revealed maternal only inheritance for chromosome 2 markers. Reduction to homozygosity of all informative markers indicated that the isochromosomes derived from a single maternal chromosome 2. Except for the possibility of homozygosity for recessive mutations, maternal uniparental disomy 2 appears to have no adverse impact on the phenotype. Our data indicate that no maternally imprinted genes with major effect map to chromosome 2.  相似文献   

13.
Uniparental disomy (UPD) involving several different chromosomes has been described in several cases of human pathologies. In order to investigate whether UPD for chromosome 21 is associated with abnormal phenotypes, we analyzed DNA polymorphisms in DNA from a family with de novo Robertsonian translocation t(21q;21q). The proband was a healthy male with 45 dup(21q) who was ascertained through his trisomy 21 offspring. No phenotypic abnormalities were noted in the physical exam, and his past medical history was unremarkable. We obtained genotypes for the proband and his parents' leukocyte DNAs from 17 highly informative short sequence repeat polymorphisms that map in the pericentromeric region and along the entire length of 21q. The order of the markers has been previously determined through the linkage and physical maps of this chromosome. For the nine informative markers there was no maternal allele contribution to the genotype of the proband; in addition, there was always reduction to homozygosity of a paternal allele. These data indicated that there was paternal uniparental isodisomy for chromosome 21 (pUPiD21). We conclude that pUPiD21 is not associated with abnormal phenotypes and that there are probably no imprinted genes on chromosome 21.  相似文献   

14.
Angelman syndrome (AS) is associated with a loss of maternal genetic information, which typically occurs as a result of a deletion at 15q11-q13 or paternal uniparental disomy of chromosome 15. We report a patient with AS as a result of an unbalanced cryptic translocation whose breakpoint, at 15q11.2, falls within this region. The proband was diagnosed clinically as having Angelman syndrome, but without a detectable cytogenetic deletion, by using high-resolution G-banding. FISH detected a deletion of D15S11 (IR4-3R), with an intact GABRB3 locus. Subsequent studies of the proband's mother and sister detected a cryptic reciprocal translocation between chromosomes 14 and 15 with the breakpoint being between SNRPN and D15S10 (3- 21). The proband was found to have inherited an unbalanced form, being monosomic from 15pter through SNRPN and trisomic for 14pter to 14q11.2. DNA methylation studies showed that the proband had a paternal-only DNA methylation pattern at SNRPN, D15S63 (PW71), and ZNF127. The mother and unaffected sister, both having the balanced translocation, demonstrated normal DNA methylation patterns at all three loci. These data suggest that the gene for AS most likely lies proximal to D15S10, in contrast to the previously published position, although a less likely possibility is that the maternally inherited imprinting center acts in trans in the unaffected balanced translocation carrier sister.  相似文献   

15.
The proband was a 22-year-old woman who had two spontaneous abortions in the first trimester of pregnancy. She had a consanguineous marriage with no history of malformation or developmental disorders in the family. Her gynecological examination was normal. Chromosome analysis of the family showed two different katyotypes 46,XY,t(1;16)(p22;p13) and 46,XX,t(1;16)(q24;q24) using high-resolution banding (HRB). Proband's family was also examined for chromosome analysis. A t(1;16)(p22;p13) was found in the husband's father and other relatives, and a t(1;16)(q24;q24) translocation in the proband's family. This second tanslocation is not found in her parents.  相似文献   

16.
Osteoporosis is a common disease with strong genetic control. We performed an autosomal linkage scan in a large pedigree-based sample of 4,498 subjects for a composite osteoporosis phenotype that combines osteoporotic fracture (OF) and low bone mineral density (BMD). All of the subjects were U.S. Caucasians recruited in the Omaha area of Nebraska. Sex-specific linkage analyses and autosomal imprinting analyses were also conducted. For conventional linkage analyses in the total sample, we identified suggestive linkage on chromosomes 14q32 (LOD = 2.61), 7p14 (LOD = 2.42), and 11q25 (LOD = 2.09). In female subjects a significant linkage signal was detected on chromosome 14q22 (LOD = 3.53) and another two peaks were detected on chromosomes 7p14 (LOD = 3.07) and 9p21 (LOD = 2.29). Suggestive evidence of imprinted loci was found with paternally derived alleles on chromosomes 1q42 (LOD = 2.12) and 9q34 (LOD = 1.88). Some evidence of linkage to maternally derived alleles was found on chromosome 7q22 (LOD = 1.67). Our study provides new clues to osteoporosis genetic research and for the first time suggests that genomic imprinting effects may play a role in the etiology of osteoporosis.  相似文献   

17.
Summary We have used a recombinant DNA clone derived from the Y-specific 3,4-kb repeats for in situ chromosome hybridization and Southern blotting analysis to identify a case of de novo Y;18 translocation. The proband has a chromosome complement of 46,XY and a variant chromosome 18 with a Q-bright and C-positive short arm. The father has a normal male karyotype of 46,XY. The mother has a female karyotype of 46,XX and an unusually large Q-bright satellite on one chromosome 22. In situ hybridization with the 3,4-kb probe to the metaphase preparations of family members indicated that the additional Q-bright material in the proband's variant chromosome 18 derived from the Y chromosome of his father, and not from the variant chromosome 22 of his mother. On Southern hybridization, the proband had approximately twice the amount of 3,4-kb repeats per cell as his father. These observations suggest a de novo genetic rearrangement in the proband which probably occurred during the father's spermatogenesis.  相似文献   

18.
A new male patient associated with a pregnancy wastage was detected in China. Cytogenetic analyses including G-banding, chromosome painting and observation of synaptonemal complexes (SCs) demonstrated that the pregnancy wastage was associated with a balanced reciprocal translocation t(11;18) (q13.3; q23). The proband was the carrier of the translocation and his karyotype was 46,XY,t(11;18)(11pter-->11q13.3:: 18q23-->18qter; 18pter-->18q23::11q13.3-->11qter). The pedigree was analyzed based on a G-banded karyotype of the nine familial members. The translocation chromosomes came from the proband's mother. The result of the SC observation in the proband showed that each of the spermatocytes displayed one quadrivalent during their pachytene stages. In the quadrivalents, there existed homologous and nonhomologous synapses and the latter occurred widely during early, middle and late pachytene stages. The reasons and genetic basis of the pregnancy wastage are discussed.  相似文献   

19.
A brief history of human autosomes.   总被引:11,自引:0,他引:11  
Comparative gene mapping and chromosome painting permit the tentative reconstruction of ancestral karyotypes. The modern human karyotype is proposed to differ from that of the most recent common ancestor of catarrhine primates by two major rearrangements. The first was the fission of an ancestral chromosome to produce the homologues of human chromosomes 14 and 15. This fission occurred before the divergence of gibbons from humans and other apes. The second was the fusion of two ancestral chromosomes to form human chromosome 2. This fusion occurred after the divergence of humans and chimpanzees. Moving further back in time, homologues of human chromosomes 3 and 21 were formed by the fission of an ancestral linkage group that combined loci of both human chromosomes, whereas homologues of human chromosomes 12 and 22 were formed by a reciprocal translocation between two ancestral chromosomes. Both events occurred at some time after our most recent common ancestor with lemurs. Less direct evidence suggests that the short and long arms of human chromosomes 8, 16 and 19 were unlinked in this ancestor. Finally, the most recent common ancestor of primates and artiodactyls is proposed to have possessed a chromosome that combined loci from human chromosomes 4 and 8p, a chromosome that combined loci from human chromosomes 16q and 19q, and a chromosome that combined loci from human chromosomes 2p and 20.  相似文献   

20.
Maternal uniparental disomy for the entire chromosome 7 (matUPD7) has been reported several times in Silver-Russell syndrome (SRS) and growth-restricted patients. Here we present our results from the analysis of an abortion with confined placental mosaicism (CPM) for trisomy 7 which showed a maternal meiotic origin of the trisomy in the placenta and rescue to maternal UPD7 in foetal membrane. Furthermore, two newly detected SRS cases with maternal UPD7 revealed isodisomy and partial heterodisomy, respectively. Summarising these results with those published previously on the origin of UPD7, similar numbers of isodisomy (n=11) and cases with complete or partial heterodisomy (n=12) have been reported. In respect to the different formation mechanisms of UPD, complete isodisomy should be the result of a post-zygotic mitotic segregation error, whereas heterodisomic UPDs should be caused by trisomic rescue after meiotic non-disjunction events. In maternal UPD7, 50% of cases seem to be caused by post-zygotic mitotic segregation errors, which is similar to the situation in trisomy 7. This result corresponds to the situation in trisomy 8 but is in contrast to observations in the frequent aneuploidies. Thus, the different findings in these aberrations reflect the presence of multiple factors that act to ensure normal segregation, varying in importance for each chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号