首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Streptococcus faecalis H+-ATPase (F1 X F0 complex) level was elevated when the cytoplasmic pH was shifted below 7.5. The elevated level was attained by the increase in functional unit (F1 X F0 complex) in membranes, but not by the activation of the enzyme. Our data strongly suggested that the increase in enzyme arises from stimulation of enzyme biosynthesis. When calls growing at pH 7.6 were transferred to an acid medium with a pH below 7, the amount of H+-ATPase increased. The amount of H+-ATPase decreased to the basal level when the medium was alkalized again. Cytoplasmic pH was not controlled normally in cells where a change in the amount of H+-ATPase was inhibited. Based on these findings and previous data (Kobayashi, H. (1985) J. Biol. Chem. 260, 72-76), we propose a model for the regulatory mechanism of streptococcal cytoplasmic pH: the pH is regulated by changes in amount and activity of the H+-ATPase, which are dependent on the cytoplasmic pH.  相似文献   

2.
A proton-translocating ATPase regulates pH of the bacterial cytoplasm   总被引:29,自引:0,他引:29  
Regulatory mechanisms of cytoplasmic pH in Streptococcus faecalis with no respiratory chain were investigated. In a mutant defective in cytoplasmic alkalization conducted by a proton-translocating ATPase (H+-ATPase), the cytoplasmic pH is approximately 0.4 to 0.5 pH units lower than the medium pH, at pH 5.5 to 9.0. The cytoplasmic pH of the wild-type strain was always higher than that of the mutant at a pH below 8 and was the same as that of the mutant at an alkaline pH over 8. Thus, the cytoplasmic pH is regulated only by the cytoplasmic alkalization, and there is no regulation at alkaline pH in S. faecalis. A generation of the protonmotive force conducted by the H+-ATPase depended on the cytoplasmic pH rather than the medium pH, and the generation decreased rapidly when the cytoplasmic pH was increased over 7.7. The decrease at alkaline pH was not caused by increases in the rate of proton influx. These results suggest that cytoplasmic alkalization is diminished when alkaline pH of the cytoplasm is over 7.7, because of a low activity of proton extrusion by the H+-ATPase, and consequently, the cytoplasmic pH is regulated at about 7.7. The cytoplasmic pH was regulated at a high level in cells that had a high level of H+-ATPase. I conclude that in S. faecalis, the cytoplasmic pH is regulated by H+-ATPase.  相似文献   

3.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

4.
以耐冷性不同的两个水稻品种为材料,比较研究了幼苗根系质膜、液泡膜ATP酶对低温(8℃)及高pH(8.0)胁迫的反应。结果表明水稻根细胞质膜和液泡膜上均存在Ca3+-ATP酶,但活性远低于H+-ATP酶。耐冷品种武育粳3号经低温(8℃)处理2d,根系质膜和液泡膜H+-ATP酶、Ca2+-ATP酶活性均明显升高,至冷处理12d,H+-ATP酶、Ca2+-ATP酶活性有所下降,但仍与对照相近;而冷敏感品种汕优63经低温(8℃)处理2d,根系质膜H+-ATP酶活性略有升高,而质膜Ca2+-ATP酶以及液泡膜H+-ATP酶、Ca2+-ATP酶活性已明显下降;至冷处理12d,4种酶活性均明显低于对照。高pH胁迫使质膜和液泡膜H+-ATP酶活性下降,而使Ca2+-ATP酶活性上升。高pH胁迫会加剧低温冷害。结果表明,耐冷品种质膜、液泡膜ATP酶比冷敏感品种对低温胁迫有更强的适应能力。  相似文献   

5.
The effect of fusicoccin on the plasmalemma H+-ATPase has been investigated in a membrane fraction from 24 h old radish seedlings, in which Mg:ATP-dependent H+-transport is mediated only by the plasmalemma H+-ATPase. Fusicoccin stimulated the plasmalemma H+-ATPase - i.e. Mg:ATP-dependent intravesicular acidification, hyperpolaryzation of delta psi and ATPase activity -, when these activities were measured at the physiologically relevant pHs of 7.3 to 7.6. No effect of FC on the plasmalemma H+-ATPase was evident at pH 6.6.  相似文献   

6.
Enzymatic properties of the ATPase of the plasma membrane and cytoplasmic myosin B from guinea-pig polymorphonuclear neutrophils were compared. In the plasma membrane, Mg2+- and Ca2+-activated ATPases showed the same dependence pattern on KCl concentration and pH, i.e., both ATPases increased with decreasing KCl concentration and with rising pH until pH 9.0. The maximum activation of Mg2+-ATPase was observed at 1 . 10(-3) M Mg2+. On the other hand, EDTA-activated ATPase activity was so low that no clear dependence curve was obtained. In myosin B, Mg2+-ATPase activity was below one-tenth that of the plasma membrane ATPase with the maximum activation at 1 . 10(-2) M Mg2+ and pH 9.0 EDTA- and Ca2+-activated ATPase exhibited almost the same activity and the same KCl-dependence curve, i.e., both ATPases increased and increasing KCl concentration. With regard to pH-dependence, Ca2+-ATPase showed a U-shaped curve with the minimum at pH 7.0, wherease EDTA-activated ATPase indicated a bell-shaped curve with the maximum at pH 9.0. Based on the findings that the EDTA-activated ATPase activity was hardly detected in the plasma membrane but high in myosin B, the distribution of ATPase activity on subcellular fractions was studied and the results obtained that the myosin-ATPase activity could be directly measured using the polymorphonuclear neutrophil extract if the EDTA-activated ATPase activity was used as an enzymatic marker for myosin.  相似文献   

7.
Distal urinary acidification is thought to be mediated by a proton ATPase (H+-ATPase). We isolated a plasma membrane fraction from human kidney cortex and medulla which contained H+-ATPase activity. In both the cortex and medulla the plasma membrane fraction was enriched in alkaline phosphatase, maltase, Na+,K+-ATPase and devoid of mitochondrial and lysosomal contamination. In the presence of oligomycin (to inhibit mitochondrial ATPase) in the presence of ouabain (to inhibit Na+,K+-ATPase) and in the absence of Ca (to inhibit Ca2+-ATPase) this plasma membrane fraction showed ATPase activity which was sensitive to dicyclohexylcarbodiimide and N-ethylmaleimide. This ATPase activity was also inhibited by vanadate, 4,4'-diisothiocyano-2,2'-disulfonic stilbene and ZnSO4. In the presence of ATP, but not GTP or UTP, the plasma membrane fraction of both cortex and medulla was capable of quenching of acridine orange fluorescence, which could be dissipated by nigericin indicating acidification of the interior of the vesicles. The acidification was not affected by presence of oligomycin or ouabain indicating that it was not due to mitochondrial ATPase or Na+,K+-ATPase, respectively. Dicyclohexylcarbodiimide and N-ethylmaleimide completely abolished the acidification by this plasma membrane fraction. In the presence of valinomycin and an outward-directed K gradient, there was increased quenching of acridine orange, indicating that the H+-ATPase is electrogenic. Acidification was not altered by replacement of Na by K, but was critically dependent on the presence of chloride. In summary, the plasma membrane fraction of the human kidney cortex and medulla contains a H+-ATPase, which is similar to the H+-ATPase described in other species, and we postulate that this H+-ATPase may be involved in urinary acidification.  相似文献   

8.
Escherichia coli batch cultures were grown under aerobic and anaerobic conditions on glucose with the substrate addition at pH 7.0. The cultures accumulated acetate in the medium at concentrations sufficient to inhibit the growth. This inhibitory effect of acetate was mediated apparently via its action on the intracellular pH. The inhibition of E. coli growth by acetate increased when the redox proton pump was switched off in the course of transition from aerobiosis to anaerobiosis and when the regulation of K+ fluxes was disordered in the presence of valinomycin. H+-ATPase was not essentially involved in maintaining the high rate of E. coli growth in the presence of acetate under aerobic conditions. If the activity of H+-ATPase was inhibited under anaerobic conditions at pH 7.0, the growth ceased after the dissipation of ionic gradients on the membrane. When CCCP was added under aerobic conditions, the growth did not stop at once if the medium had a pH of 7.6, but ceased immediately at pHout 7.0 in the glucose-salt medium.  相似文献   

9.
Summary The distribution of Mg+ +-ATPase in osteoclasts along the endosteal surface of the chick tibia was investigated by neutral and alkaline pH cytochemical methods at the electron-microscopic level. Reaction product was observed in mitochondria, cytoplasmic vesicles, and ruffled-border membrane. Levamisole, ouabain, and vanadate did not affect the enzymatic activity. Para-chloromercuribenzoic acid (PCMB) prevented staining of mitochondria, ruffled border, and most cytoplasmic vesicles. Tri-n-butyltin decreased the amount of reaction product in cytoplasmic vesicles and ruffled-border membrane, but did not inhibit reaction product formation within mitochondria. Duramycin, which is a potent inhibitor for proton-pump ATPase, blocked reaction-product formation along the ruffled-border membrane, in mitochondria, and in cytoplasmic vesicles at alkaline pH, but not at neutral pH. It is concluded that the alkaline pH method for Mg+ +-ATPase appears to demonstrate sites of proton-pump ATPase activity.  相似文献   

10.
Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance   总被引:11,自引:0,他引:11  
Abstract Lactic acid bacteria maintain a cytoplasm that is more alkaline than the medium, but whose pH decreases as the medium is acidified during growth and fermentation. Streptococci generally acidify the cytoplasm from approximately pH 7.6 to 5.7 (external pH 4.5) before growth and then fermentation cease. The internal enzyme machinery of these anaerobic fermenters thus tolerates a fairly wide range in internal proton concentration. Lactobacilli tolerate a significantly more acidic cytoplasmic pH of 4.4 (external pH 3.5). However, when the cytoplasmic pH decreases below a threshold pH, which depends on the organism cellular functions are inhibited. Fermentation end-products, such as organic acids or alcohols, exert their deleterious effects by bringing about acidification of the cytoplasm below the permissible pH. Organic acids, which act as protonophores, or solvents, which perturb membrane phospholipids, at high concentrations increase the inward leak of H+ so that H+ efflux is not rapid enough to alkalinize the cytoplasm. The membrane pH gradient is thus dissipated.
A specific strain of Lactobacillus acidophilus has been found to be unusually osmotolerant. The osmoresistance is due to the cells' capacity to accumulate glycine betaine by a transport carrier that is activated, but not induced, by high medium osmotic pressure.  相似文献   

11.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

12.
Potassium extrusion in bacteria is thought to play a role in the regulation of the cytoplasmic pH; in several organisms, it has been ascribed to secondary antiport of K+ for protons. Streptococcus faecalis exhibited a distinctive pattern: potassium extrusion occurred only when the cytoplasmic pH was alkaline and required the generation of ATP. The key observation is that glycolyzing cells suspended in an alkaline medium extruded K+, even against a K+ concentration gradient, provided the medium contained a weak permeant base (e.g. diethanolamine or methylamine). The amines render the cytoplasmic pH alkaline; when conditions were arranged to keep the cytoplasm neutral, no K+ extrusion was seen. Potassium extrusion required the presence of either glucose or arginine and was unaffected by protonophores and by inhibition of the F1Fo-ATPase. When the medium contained [14C]methylamine, the cells accumulated the base to an extent stoichiometrically equivalent to the K+ lost. Concurrently, the cytoplasmic pH fell from 8.8 to 7.6, at which point K+ extrusion ceased. The results suggest that K+ extrusion is due to an ATP-driven transport system that expels K+ by exchange for H+ and is active only at alkaline cytoplasmic pH.  相似文献   

13.
In Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM). Comparable changes of Ca2+ fluxes are also induced by hyperosmotic treatment. However, in this case, the H2O2 level does not rise, but declines below control levels when Ca2+ efflux is activated. Also K+ and H+ net fluxes across the PM and cytoplasmic pH (pH(cyt)) are very differently influenced by the two opposite stresses: strongly decreased by hypoosmotic stress and increased under hyperosmotic treatment. The H2O2 accumulation kinetics, followed as a function of the pH(cyt) changes imposed by modulation of the PM H+-ATPase activity or weak acid treatment, show a close correlation between pH(cyt) and H2O2 formed, a larger amount being produced for changes towards acidic pH values. Overall, these results confirm a relevant role for the PM Ca2+-ATPase in switching off the signal triggering ROS production, and propose a role for the PM H+-ATPase in modulating the development of the oxidative wave through the pH(cyt) changes following the changes of its activity induced by stress conditions.  相似文献   

14.
The rate of protonophore-mediated decay of pH gradient across lipid vesicular membranes was found to be enhanced by orders of magnitude by valinomycin-K+. Experiments in the presence of gramicidin have shown that the observed rate enhancement by valinomycin-K+ is not due to collapse of the diffusion potential alone. The enhancement of the rate showed hyperbolic dependence on the concentration of valinomycin. Rate enhancement was observed in the presence of the membrane permeant cation tetraphenylphosphonium (TTP+) also. Several factors which might enhance the intrinsic H+ conductivity of protonophores were analyzed. The level of partitioning of the protonophore into the membrane and the pK of membrane-bound protonophores were measured. Valinomycin-K+ did not alter both these parameters significantly. TPP+ increased the partitioning of protonophores and decreased the pK values of membrane-bound protonophores. However, these changes were too small to explain the observed rate enhancements. We suggest that valinomycin-K+ and TPP+ enhance the H+ conductivity of protonophores by increasing the permeability of the ionized form of protonophores by forming an ion pair.  相似文献   

15.
The K+/H+ antiporter of a marine bacterium, Vibrio alginolyticus, is strongly dependent upon the cytoplasmic pH and functions only at an internal pH above 7.7. In alkaline buffer with an outwardly directed chemical gradient of K+ (delta pK), the internal pH was maintained at about 7.7. Addition of N-ethylmaleimide (NEM) released cellular K+ and acidified the cytosol below pH 7.7. The NEM effect was reversed by the addition of 2-mercaptoethanol: K+ efflux ceased, and the internal pH returned to about 7.7. In acidic buffer, the internal pH was also regulated at about 7.6 even in the absence of delta pK. Following addition of NEM, the internal pH decreased below 7.6, dissipating delta pH. These results suggest that NEM desensitizes the pH-dependence of the K+/H+ antiporter, allowing the antiporter to function at an internal pH below 7.7.  相似文献   

16.
Earlier work from this laboratory led to the proposal that the cytoplasmic pH of streptococcal cells is regulated solely by changes in the amount and activity of a proton-translocating ATPase, F1F0 complex [Kobayashi, H., Suzuki, T. & Unemoto, T. (1986) J. Biol. Chem. 261, 627-630]. We have now examined the proposal with the aid of computer simulation. We find that an increase in the amount of the H+-ATPase is necessary for pH regulation and is sufficient to maintain a constant steady-state cytoplasmic pH. An increase in H+-ATPase activity is insufficient by itself to maintain a constant cytoplasmic pH, but suppresses the initial fluctuation of the pH. When both variations were allowed, the simulated cytoplasmic pH remained constant despite large perturbations, suggesting that this regulatory system has ample capacity to compensate for pH changes. The present work shows that a computer simulation is a useful way to examine a model for biological regulatory system; application of the simulation to other regulatory systems is discussed.  相似文献   

17.
Characterization of a vacuolar proton ATPase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
Of the total ATPase activity in homogenates of the ameba, Dictyostelium discoideum, approximately one-third was inhibited at pH 7 by 25 microM 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Upon isopycnic sucrose density gradient centrifugation, the bulk of the NBD-CI-sensitive ATPase activity was recovered in a major membrane fraction with a broad peak at 1.16 g/ml, well-resolved from markers for plasma membranes, mitochondria, lysosomes and contractile vacuoles. The gradient peak had a specific activity of 0.5 mumol/min per mg protein. The activity was half-inhibited by 1 microM silicotungstate, 2 microM diisothiocyanatostilbene disulfonate (DIDS), 2.5 microM dicyclohexylcarbodiimide (DCCD), 4 microM NBD-CI and 20 microM N-ethylmaleimide (NEM) but was resistant to conventional inhibitors of mitochondrial and plasma membrane ATPase. That this ATPase activity constituted a proton pump was shown by the MgATP-dependent uptake and quenching of Acridine orange fluorescence by partially purified vacuoles. The Acridine orange uptake was specifically blocked by the aforementioned inhibitors. The generation of proton electrochemical gradients was suggested by the stimulation of enzyme activity by protonophores (fatty acids) and cation exchangers (nigericin). Uncoupling stimulated the ATPase activity as much as 20-fold, revealing an unusually high impermeability of the membranes to protons. ATPase activity was also stimulated by halide ions, apparently through a parallel conductance pathway. Under a variety of sensitive test conditions, the reverse enzyme reaction (i.e., incorporation of 32Pi into ATP) was not detected. We conclude that this major H+-ATPase serves to acidify the abundant prelysosomal vacuoles found in D. discoideum (Padh et al. (1989) J. Cell Biol. 108, 865-874). The finding of a vacuolar H+-ATPase in a protist suggests the ubiquity of this enzyme among the eukaryotic kingdoms.  相似文献   

18.
In Streptococcus faecalis (faecium), the cytoplasmic pH is regulated by proton extrusion via a proton translocating F1F0-ATPase; the level of this enzyme increases in response to cytoplasmic acidification (Kobayashi, H., Suzuki, T., and Unemoto, T. (1986) J. Biol. Chem. 261, 627-630). We describe here two novel acid-sensitive mutants, designated AS8 and AS17, that contain ATPase activity but fail to grow on acid media. Our data suggested that in mutant AS17, acidification of the cytoplasm stimulates synthesis of the F0 sector of the ATPase but not the F1 sector. The accumulation in the plasma membrane of F0 sectors devoid of F1 results in enhanced proton permeability, and as a consequence mutant AS17 is unable to regulate the cytoplasmic pH in acid media. The genetic defect may reside in a gene that regulates expression of the F1F0-ATPase. Mutant AS8 does not generate a proton motive force. Our results suggest that the F1F0-ATPase can hydrolyze ATP but fails to translocate protons due to a defect in one of the subunits of the F0 sector.  相似文献   

19.
1. A membrane vesicle fraction containing a high (K+ + H+)-ATPase activity was isolated from porcine gastric mucosa. The enzyme has a pH optimum of 7.0 and is stimulated by T1+, K+, Rb+ and NH4+ with KA values of 0.13, 2.7, 7.6 and 26 mM, respectively, at this pH. 2. Incubation of the isolated membrane fraction with butanedione leads to inactivation of the (K+ + H+)-ATPase activity. The pH-dependence of the (K+ + H+)-ATPase activity. The pH-dependence of the inactivation and the reversibility of the reaction, observed after removal of excess butanedione and borate, indicate that modification of arginine is involved. 3. The inactivation of (K+ + H+)-ATPase activity by butanedione is time-dependent and follows second-order kinetics. From the dependence of the inactivation rate on the reagent concentration it appears that a single arginine residue is involved in the inactivation of the (K+ + H+)-ATPase activity. 4. ATP, deoxy-ATP, ADP and adenylyl imidodiphosphate (AMPPNP), but not CTP, GTP and ITP which are poor substrates, protect the enzyme against butanedione inactivation, suggesting that the essential arginine residue is located in the ATP binding centre. 5. In the presence of Mg2+ the butanedione inactivation is increased, and the protection by ATP, deoxy-ATP and ADP (but not that by AMPPNP) is less pronounced. This suggests that Mg2+ induces a conformational change in the enzyme, exposing the arginine group and coinciding with phosphorylation and subsequent release of ADP from its binding site.  相似文献   

20.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号