首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called over-expressing allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.  相似文献   

2.
The Glu-B1al (Bx7OE + By8) allele is important for bread-making quality. The allele was found in a Korean wheat landrace using specific DNA markers. Molecular analyses were conducted to identify the overexpressed Bx7 (Bx7OE) subunit of the allele. The Korean wheat landrace (accession ID: IT166460) showed a similar protein expression level of Bx7 subunit, i.e., overexpression of Bx7 subunit towards cv. Glenlea, Canadian Western Red Spring wheat, which harbors Bx7OE subunit of Glu-B1al as detected on SDS–PAGE (sodium dodecyl sulfate poly-acrylamide gel electrophoresis). In addition, 2-DE (two-dimensional electrophoresis) analysis revealed similar protein expression patterns of the Bx7 subunit regions of IT166460 and Glenlea. The proportion of Bx7 to total HMW-GSs (high molecular weight glutenin subunits) in IT166460 (56.17 ± 0.22%) was higher than that of Chinese Spring (34.75 ± 1.03%) and even that of Glenlea (46.25 ± 1.76%) as assessed by RP-HPLC (reverse-phase high-performance liquid chromatography). Overexpression of Bx7 subunit was caused by gene duplication and indels of the promoter region of the Bx7 gene. IT166460 attained the 43 bp indel of the promoter region, as did Glenlea, i.e., the amplicon size of IT166460 was the same as that of Glenlea. In addition, the nucleotides present in the duplicated gene in IT166460 were the same as those in Glenlea. Bx7OE subunit is critical for dough strength. However, most wheat accessions harboring the subunit are distributed in America. Furthermore, most Korean wheats have little genetic variation in glutenin composition and are associated with inferior bread quality. Hence, IT166460 could be used to improve bread-making quality in the Korean wheat breeding program.  相似文献   

3.
4.
二粒小麦(Triticum turgidum L.var.dicoccoides)具有极其丰富的遗传多样性,是栽培小麦品种改良的巨大基因库。在高分子量谷蛋白基因的组成上,它具有许多栽培小麦不存在的变异类型,在Glu—B1位点上的变异更大。我们利用种子贮藏蛋白的SDS—PAGE方法从原产于伊朗的二粒小麦材料PI94640中观察到缺失Glu—B1区的高分子量谷蛋白亚基。利用Glu-1Bx基因保守序列设计PCR引物,对该材料的总DNA扩增,获得了X型亚基编码基因(Glu-1Bxm)的全序列,其全长为3442bp含1070bp的启动子区。序列比较发现,Glu-1Bxm在启动子区序列与Glu—1Bx7的最为相似。而在基因编码区,我们发现Glu—1Bxm仅编码212个氨基酸,由于开放阅读框中起始密码子后第637位核苷酸发生了点突变,即编码谷酰胺的CAA突变为终止密码TAA,可能直接导致了该高分子量谷蛋白亚基的失活,这是我们在小麦Glu—B1位点基因沉默分子证据的首次报道。将Glu—1Bxm全序列与Glu—B1位点其他等位基因进行了系统树分析,发现Glu—1Bxm是较为古老的类型。本文还对该特异高分子量谷蛋白亚基变异类型对品质遗传改良研究的意义进行了讨论。  相似文献   

5.
Yang ZJ  Li GR  Shu HL  Liu C  Feng J  Chang ZJ  Ren ZL 《Hereditas》2006,143(2006):159-166
High molecular weight glutenin subunit (HMW-GS) 1Bx23, an x-type subset encoded by Glu-B1p, which is only distributed in Triticum turgidum, was successfully transferred from hexaploid triticale to common wheat line SY95-71. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that subunit 1Bx23 has a faster mobility than subunit 1Bx7 and 1Bx20, but slower than 1Bx17. Primers designed from the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of SY95-71. Total nucleotide sequences of 3426 bp including an open reading frame of 2385 bp and upstream sequence of 1038 bp were obtained. Compared with the reported gene sequences of Glu-B1-1 alleles, including 1Bx7, 1Bx14, 1Bx20 and 1Bx17, the promoter region of the 1Bx23 was displayed close to 1Bx7 and 1Bx17. The deduced amino acid sequence of coding region of 1Bx23 exhibited 34, 30, 20 and 22 amino acid substitutions from that of 1Bx14, 1Bx20, 1Bx7 and 1Bx17, respectively. A phylogenetic tree based on the nucleotide sequence alignment of the Glu-1Bx alleles shows that the 1Bx23 are apparently clustered with 1Bx7 and 1Bx17, and more ancient than 1Bx14 and 1Bx20, suggesting that the evolution speeds are different among Glu-1Bx genes. Additionally, the potential use of wheat line SY95-71 to further screen the quality contribution of unique subunit 1Bx23 is also discussed.  相似文献   

6.
A previous study in wheat (Triticum aestivum L.) identified two candidate genes controlling a quantitative trait locus (QTL) for high-molecular-weight glutenin subunit (HMW-GS) GluBx. These candidates were Glu-B1-1, the structural gene coding for Glu1Bx, and the B homoeologous gene coding for SPA (spa-B), a seed storage protein activator. The goal of this study was to identify the best candidate gene for this QTL. Single nucleotide polymorphisms (SNPs) are an abundant source of DNA polymorphisms that have been successfully used to identify loci associated with particular phenotypes. As no linkage disequilibrium was detected between Glu-B1-1 and spa-B, we performed an association study to identify the individual gene responsible for the QTL. Six SNPs, three located in Glu-B1-1 and three in spa-B, were genotyped by mass spectrometry in a collection of 113 bread wheat lines. These lines were also evaluated for protein content as well as the total quantity of HMW-GSs and of each HMW-GS in seed samples from two harvest years. Significant associations were detected only between Glu-B1-1 polymorphism and most of the traits evaluated. Spa-B was unambiguously discarded as a candidate. To our knowledge, this is the first report on an association study that was successfully used to discriminate between two candidate genes.  相似文献   

7.
High-molecular-weight glutenin subunits (HMW-GS) are important determinants of wheat dough quality as they confer visco-elastic properties to the dough required for mixing and baking performance. With this important role, the HMW-GS alleles are key markers in breeding programs. In this work, we present the use of a PCR marker initially designed to discriminate Glu1 Bx7 and Glu1 Bx17 HMW-GS. It was discovered that this marker also differentiated two alleles, originally both scored as Glu1 Bx7, present in the wheat lines CD87 and Katepwa respectively, by a size polymorphism of 18 bp. The marker was scored across a segregating doubled-haploid (DH) population (CD87 × Katepwa) containing 156 individual lines and grown at two sites. Within this population, the marker differentiated lines showing the over-expression of the Glu1 Bx7 subunit (indicated by the larger PCR fragment), derived from the CD87 parent, relative to lines showing the normal expression of the Glu1 Bx7 subunit, derived from the Katepwa parent. DNA sequence analysis showed that the observed size polymorphism was due to an 18 bp insertion/deletion event at the C-terminal end of the central repetitive domain of the Glu1 Bx 7 coding sequence, which resulted in an extra copy of the hexapeptide sequence QPGQGQ in the deduced amino-acid sequence of Bx7 from CD87. When the DH population was analysed using this novel Bx7 PCR marker, SDS PAGE and RP HPLC, there was perfect correlation between the Bx7 PCR marker results and the expression level of Bx7. This differentiation of the population was confirmed by both SDS-PAGE and RP-HPLC. The functional significance of this marker was assessed by measuring key dough properties of the 156 DH lines. A strong association was shown between lines with an over expression of Bx7 and high dough strength. Furthermore, the data demonstrated that there was an additional impact of Glu-D1 alleles on dough properties, with lines containing both over-expressed Bx7 and Glu-D1 5+10 having the highest levels of dough strength. However, there was no statistically significant epistatic interaction between Glu-B1 and Glu-D1 loci.Communicated by J.W. Snape  相似文献   

8.
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.  相似文献   

9.
Understanding the molecular structure of high-molecular-weight glutenin subunit (HMW-GS) may provide useful evidence for the study on the improvement of quality of cultivated wheat and the evolution of Glu-1 alleles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that the subunits encoded by Glu-B1 were null, named 1Bxm, in a Triticum turgidum var. dicoccoides line PI94640. Primers based on the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of line PI94640. The PCR products were sequenced, and the total nucleotide sequence of 3 442 bp including upstream sequence of 1 070 bp was obtained. Compared with the reported gene sequences of Glu-1Bx alleles, the promoter region of the Glu-1Bxm showed close resemblance to 1Bx7. The Glu-1Bxm coding region differs from the other Glu-1Bx alleles for a deduced mature protein with only 212 residues, and a stop codon (TAA) at 637 bp downstream from the start codon was present, which was probably responsible for the silencing of x-type subunit genes at the Glu-B1 locus. Phylogenetic tree based on the nucleotide sequence alignment of HMW glutenin subunit genes showed that 1Bxm was the most ancient type of Glu-B1 alleles, suggesting that the evolution rates are different among Glu-1Bx genes. Further study on the contribution of the unique silenced Glu-B1 alleles to quality improvement was also discussed.  相似文献   

10.
Molecular markers based on DNA sequence variations of the coding and/or promoter regions of the wheat (Triticum aestivum L.) HMW glutenin genes located at the Glu-1 loci were developed. Markers characteristic of alleles Glu-A1-1a (encoding Ax1 subunit) and Glu-A1-1c (encoding Ax2* subunit) at the Glu-A1 locus, alleles Glu-B1ak (encoding Bx7* subunit) and Glu-B1al for overexpressed Bx7 subunit at the Glu-B1 locus and alleles Glu-D1-1a (encoding Dx2 subunit) and Glu-D1-1d (encoding Dx5 subunit) at the Glu-D1 locus were tested using genomic DNA of haploid leaf tissue. A method for simultaneously extracting DNA from 96 haploid leaf tissue pieces is described. Two of the developed markers were dominant and two were co-dominant. A F1-derived population segregating for all HMW glutenin genes was used to test the validity of the markers and their usefulness in doubled haploid breeding programs. SDS-PAGE analysis of seed storage protein was performed on seeds from the doubled haploid lines. A total of 299 lines were tested with the DNA markers on the haploid tissue and validated by protein analysis of the corresponding DH seeds. PCR markers and SDS-PAGE analysis showed between 2 and 8.5% discrepancies depending on the marker. Applications of DNA markers for gene-assisted-selection of haploid tissue and use in breeding programs are discussed. Advantages and disadvantages of dominant and co-dominant markers are outlined.  相似文献   

11.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

12.
 The high-molecular-weight glutenin (HMW) genes and encoded subunits are known to be critical for wheat quality characteristics and are among the best-studied cereal research subjects. Two lines of experiments were undertaken to further understand the structure and high expression levels of the HMW-glutenin gene promoters. Cross hybridizations of clones of the paralogous x-type and y-type HMW-glutenin genes to a complete set of six genes from a single cultivar showed that each type hybridizes best within that type. The extent of hybridization was relatively restricted to the coding and immediate flanking DNA sequences. Additional DNA sequences were determined for four published members of the HMW-glutenin gene family (encoding subunits Ax2*, Bx7, Dx5, and Dy10) and showed that the flanking DNA of the examined genes diverge at approximately −1200 bp 5′ to the start codon and 200–400 bp 3′ to the stop codon. These divergence sites may indicate the boundaries of sequences important in gene expression. In addition, promoter sequences were determined for alleles of the Bx gene (Glu-B1-1), a gene reported to show higher levels of expression than other HMW-glutenin genes and with variation among cultivars. The sequences of Bx promoters from three cultivars and one wild tetraploid wheat indicated that all Bx alleles had few differences and contained a duplicated portion of the promoter sequence “cereal-box” previously suspected as a factor in higher levels of expression. Thus, the “cereal-box” duplication preceeded the origin of hexaploid wheat, and provides no evidence to explain the variations in Bx subunit synthesis levels. One active Bx allele contained a 185-bp insertion that evidently resulted from a transposition event. Received: 5 August 1997 / Accepted: 6 November 1997  相似文献   

13.
1Bx14 is a member of the high molecular weight (HMW) glutenin subunits specified by wheat Glu-B1-1 alleles. In this work, we found that the full-length amino acid sequence of 1Bx14 derived from cloned coding region was similar, but not identical, to that of 1Bx20. In the N-terminal domains of 1Bx14 and 1Bx20, the last two of the three cysteine residues, which are conserved in 1Bx7, 1Bx17 and homoeologous 1Ax and 1Dx subunits, were replaced by tyrosine residues. In the 5 flanking regions (–900 to –1,200 bp relative to the start codon), a novel miniature inverted-repeat transposable element insertion was present in 1Bx14 and 1Bx20 but not 1Bx7 and 1Bx17. 1Bx14 and 1Bx20 like alleles were readily found in tetraploid wheat subspecies but not several S genome containing Aegilops species. Phylogenetic analysis showed that the four molecularly characterized Glu-B1-1 alleles (1Bx7, 1Bx14, 1Bx17, 1Bx20) could be divided into two allelic lineages. The lineage represented by 1Bx7 and 1Bx17 was more ancient than the one represented by 1Bx14 and 1Bx20. Combined, our data establish that 1Bx14 and 1Bx20 represent a novel subclass of Glu-B1-1 alleles. Based on current knowledge, potential mechanism involved in the differentiation of two Glu-B1-1 lineages is discussed.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
Seed storage-protein variation at theGlu-A1,Glu-B1 andGli-B1/Glu-B3 loci in the tetraploid wild progenitor of wheat,T. dicoccoides, was studied electrophoretically in 315 individuals representing nine populations from Jordan and three from Turkey. A total of 44 different HMW-glutenin patterns were identified, resulting from the combination of 15 alleles in the A genome and 19 in the B genome. Twenty-seven new allelic variants, 12 at theGlu-A1 locus and 15 at theGlu-B1 locus, were identified by comparing the mobilities of their subunits to those previously found in bread and durum wheats. The novel variants include six alleles at theGlu-A1 locus showing both x and y subunits. The genes coding for the 1Bx and 1By subunits showed no or very little (3%) inactivity, the 1Ax gene showed a moderate degree (6.3%) of inactivity whereas the gene coding for lAy showed the highest degree of inactivity (84.8%). A high level of polymorphism was also present for the omega- and gamma-gliadins and LMW-glutenin subunits encoded by genes at the linkedGli-B1 andGlu-B3 loci (19 alleles). Some Jordanian accessions were found to contain omega-gliadin 35, gamma-gliadin 45, and LMW-2 also present in cultivated durum wheats and related to good gluten viscoelasticity. The newly-discovered alleles enhance the genetic variability available for improving the technological quality of wheats. Additionally some of them may facilitate basic research on the relationship between industrial properties and the number and functionality of HMW- and LMW-glutenin subunits.  相似文献   

15.
In common wheat (Triticum aestivum L.), allelic variations of Glu-1 loci have important influences on grain end-use quality. The allelic variations in high molecular weight glutenin subunits (HMW-GSs) were identified in 151 hexaploid wheat varieties representing a historical trend in the cultivars introduced or released in Hebei province of China from the years 1970s to 2010s. Thirteen distinct alleles were detected for Glu-1. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the 1 (43.0%), 7+8 (64.9%), 2+12 (74.8%) alleles, respectively, in wheat varieties. Twenty two different HMW-GS compositions were observed in wheat. Twenty-five (16.6%) genotypes possessed the combination of subunits 1, 7+8, 2+12, 25 (16.6%) genotypes had subunit composition of 2*, 7+8, 2+12; 20 (13.2%) genotypes had subunit composition of null, 7+8, 2+12. The frequency of other subunit composition was less than 10%. The Glu-1 quality score greater than or equal to 9 accounted for 20.6% of the wheat varieties. The percentage of superior subunits (1 or 2* subunit at Glu-A1 locus; 7+8, 14+15 or 17+18 at Glu-B1 locus; 5+10 or 5+12 at Glu-D1 locus) was an upward trend over the last 40 years. The more different superior alleles correlated with good bread-making quality should be introduced for their usage in wheat improvement efforts.  相似文献   

16.
To investigate the origin of European spelt (Triticum spelta L., genome AABBDD) and its relation to bread wheat (Triticum aestivum L., AABBDD), we analysed an approximately 1-kb sequence, including a part of the promoter and the coding region, of the high-molecular-weight (HMW) glutenin B1-1 and A1-2 subunit genes in 58 accessions of hexa- and tetraploid wheat from different geographical regions. Six Glu-B1-1 and five Glu-A1-2 alleles were identified based on 21 and 19 informative sites, respectively, which suggests a polyphyletic origin of the A- and B-genomes of hexaploid wheat. In both genes, a group of alleles clustered in a distinct, so-called beta subclade. High frequencies of alleles from the Glu-B1-1 and Glu-A1-2 beta subclades differentiated European spelt from Asian spelt and bread wheat. This indicates different origins of European and Asian spelt, and that European spelt does not derive from the hulled progenitors of bread wheat. The conjoint differentiation of alleles of the A- and B-genome in European spelt suggests the introgression of a tetraploid wheat into free-threshing hexaploid wheat as the origin of European spelt.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J. Dvorak  相似文献   

17.
Spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) is a hulled wheat of Germanic origin that survives at marginal areas in Asturias (Spain). The HMW glutenin subunit composition of 403 accessions of spelt wheat from Spain has been analysed by SDS-PAGE. Three allelic variants were detected for Glu-A1. For the Glu-B1 locus, two of seven alleles detected have not been found before; while four of nine alleles detected for the Glu-D1 are not previously described. Considering the three loci, twenty five combinations were found among all the evaluated lines. This wide polymorphism could be used to transfer new quality genes to wheat, and widen the genetic basis of them. Received: 19 September 2000 / Accepted: 20 October 2000  相似文献   

18.
The recently achieved significant improvement of cereal transformation protocols provides facilities to alter the protein composition of the endosperm, for example, to increase or decrease the quantity of one of its protein components or to express foreign molecules. To achieve this goal, strong endosperm-specific promoters have to be available. The aim of our work was to develop a more efficient tissue-specific promoter which is currently used. A chimaeric promoter was assembled using the 5′ UTR (1,900 bp) of the gene coding for the 1Bx17 HMW glutenin subunit protein, responsible for tissue-specific expression and the first intron of the rice actin gene (act1). The sequence around of the translation initial codon was optimized. The effect of the intron and promoter regulatory sequences, using different lengths of 1Bx17 HMW-GS promoter, were studied on the expression of uidA gene. The function of promoter elements, promoter length, and the first intron of the rice actin gene were tested by a transient expression assay in immature wheat endosperm and in stable transgenic rice plants. Results showed that insertion of the rice act1 first intron increased GUS expression by four times in transient assay. The shortest 1Bx17 HMW-GS promoter fragment (173 bp) linked to the intron and GUS reporter gene provided almost the same expression level than the intronless long 1Bx17 HMW-GS promoter. Analysis of the stable transformant plants revealed that 173 nucleotides were sufficient for endosperm-specific expression of the uidA gene, despite 13 nucleotides missing from the HMW enhancer sequence, a relevant regulatory element in the promoter region.  相似文献   

19.
The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat (T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.Communicated by B. Friebe  相似文献   

20.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号