首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以薄皮和厚皮类型甜瓜为试材,采用改良的染色体制片方法,系统观察了甜瓜花粉母细胞的减数分裂及雄配子体发育的过程,结果表明:(1)甜瓜细胞核减数分裂的同步性较高,细胞质是同时型分裂,在细胞核分裂的过程中,核仁在前期Ⅰ到中期Ⅰ逐渐消失,在前期Ⅱ再次出现,随后消失,染色体在前期Ⅰ到中期Ⅰ逐渐收缩,变得清晰,至末期Ⅰ变得模糊,在前期Ⅱ再次清晰;(2)2种类型甜瓜终变期的染色体构型都以环状二价体为主;(3)在后期Ⅱ,观察到染色体的垂直和平行2种分离方式;(4)在前期Ⅰ和前期Ⅱ,伽师瓜"形成了多个较小的核仁,呈现一定的特殊性;(5)雄配子体发育经历了单核期和双核期,最后形成了成熟的花粉粒.研究表明,薄皮和厚皮类型甜瓜减数分裂的染色体行为基本一致,没有明显差异;伽师瓜"的核仁数量表现特殊可能与其长期的生态适应性有关.  相似文献   

2.
在小孢子和雄配子形成过程中,中期Ⅱ、小孢子和生殖细胞有丝分裂中期染色体数目增加和减少细胞的百分率分别与前一时期(中期Ⅰ、中期Ⅱ和小孢子有丝分裂中期)染色体数目增加和减少细胞的百分率相近,而中期Ⅰ染色体数目增加和减少细胞的百分率又分别与凝线期2.3→1和1→2.3型染色质胞间转移的百分率相近,统计学上无显著差异。据此认为:(1)染色体数目的改变与染色质的胞间转移活动有关;(2)中期Ⅰ那些染色体数目增加或减少的细胞基本上都能够进一步发育,直至形成雄配子。  相似文献   

3.
对表现不育的体细胞培养再生植株作减数分裂细胞遗传学分析发现,一株由IR54幼穗外植体起源的不育株(二倍体)为部分联会消失变异。其减数分裂早前期染色体配对正常,在终变期及中期Ⅰ观察到了数目不等的单价染色体,后期Ⅰ出现各种数目的落后染色体。由于减数分裂时染色体不平衡而导致该再生植株不育。  相似文献   

4.
本文详述了云南松花粉母细胞的减数分裂、小孢子发生及雄配子体形成过程。在研究中发现:花粉母细胞在减数分裂中有明显的不同步现象;有少数发育畸形的小孢子;在减数分裂后期Ⅰ有染色单体桥及染色体片断出现;雄配子体发育过程中核分裂的方向异常;染色体数目2n=24与其它报道一致。  相似文献   

5.
利用扫描电镜技术首次对四刺盅口线虫Cyathostomum tetracanthum、碗形盅口线虫C.catinatum和蝶状盅口线虫C.pateratum的体表结构特征进行观察和比较.结果表明:3种线虫在外叶冠的形状和数目、雄虫生殖锥和雌虫尾部等结构方面存在一定的差异.四刺盅口线虫的外叶冠由20或22个小叶组成,小叶末端尖,向外翻卷;雄虫生殖锥背唇上有1对大的乳房状附属物;雌虫尾部直,尾长114 (92 ~128)μm.碗形盅口线虫的外叶冠由22个小叶组成,小叶末端钝圆,平直伸向口孔;雄虫生殖锥背唇上无明显的附属物;雌虫尾部呈“人脚形”,尾长62 (54~68) μm.蝶状盅口线虫的外叶冠由24个小叶组成,小叶末端尖,平直伸向口孔;雄虫生殖锥背唇上有1对细长的指状附属物;雌虫尾部呈“人脚形”,尾长93 (78~109) μm.研究结果为盅口线虫的分类鉴定提供了更稳定的形态学依据.  相似文献   

6.
采用DAPI-荧光染色法研究松材线虫、拟松材线虫、李氏长尾线虫和吴氏长尾线虫等两对形态相似的姊妹线虫的成虫生殖系细胞学特征,描述并且比较了两对姊妹线虫之间以及姊妹线虫对之间的成虫生殖系细胞排列方式和贯穿于生殖细胞分裂过程中的染色体变化行为,同时也图示了这4种线虫的成虫生殖系细胞核形态图和染色体形态图。研究表明,利用线虫成虫生殖系细胞学特征来探讨线虫种类之间甚至个体之间的相互关系,将可能便于人们更好地界定线虫"种"的范围及解释线虫进化和系统发育过程;研究还表明,经DAPI-荧光染色的生殖系细胞排列模式可能可以作为一种较好的线虫分类特征。此外,本研究的4种线虫的染色体数目均为2n=12。  相似文献   

7.
(一)减数分裂与细胞学、遗传学的关系现行《生物》课本中“减数分裂与生殖细胞的成熟”一节教材是全书中重要的一节,减数分裂是一种特殊的有丝分裂。在减数分裂过程中细胞经过连续两次分裂,而染色体只复制一次,结果使性细胞中染色体数目减半。性细胞再经受精作用形成合子,合子中染色体数目又恢复到亲代体细胞中染色体数目,从而使亲子代细胞中的遗传物质保持相对稳定。减数分裂的前期I,细胞中的染色体发生了一系列特殊的变化——同源染色体联会、交叉互换和分离。每一对同源染色体中的两条染色体彼此分离,以后随机地分配到二个子细胞中去;异源染色体  相似文献   

8.
减数分裂是有性生殖生物配子产生的必需过程.在细胞进入减数分裂前,其染色体复制1次,但启动分裂后,细胞进行二次分裂,从而产生染色体数目减半的配子.减数分裂Ⅰ前期同源染色体的配对、联会、重组以及减数分裂Ⅰ后期同源染色体的分离是减数分裂的基本特征,而这些减数分裂特异事件的按时、依序发生则有赖于减数分裂Ⅰ前期程序性D N A双链断裂(D S B)的产生和以同源染色体为模板进行的同源重组修复.本文将对减数分裂特别是减数分裂Ⅰ前期染色体的行为进行简要综述,并就其分子基础和机制进行分析讨论.  相似文献   

9.
在拟南芥生态型LandsbergErecta体细胞胚胎发生体系的胚性愈伤组织中观察到2种类型的体细胞减数分裂现象。一种是体细胞染色体减数分组,其中,处于前期或中期的细胞染色体分为2个或2个以上的组。其共同特点是,染色体直接分开,未观察到纺锤体,从染色体的形态也看不出纺锤体的作用。染色体减数分组较多发生于多倍体细胞中。另一种类型是体细胞减数分裂,这种类型类似于大小孢子发生过程的减数分裂,如第一次分裂前期也有染色体的联会和配对。在脱分化培养基上的胚性愈伤组织中,单倍体细胞约占3%,四倍体细胞约占4%。经体细胞类减数分裂产生的细胞都发生染色体重组。  相似文献   

10.
李桂英  邢苗 《遗传学报》1999,26(5):571-577
肌动蛋白间接免疫荧光标记实验观察到紫鸭跖草花粉母细胞减数分裂前期Ⅰ细胞核,中期┘染色体,二分体和四分体均发现较明亮的黄绿色荧光,说明其中含有肌动蛋白。经TRIT-C鬼等环肽荧光标记后,减数分裂前Ⅰ细胞核,二分枝及中期Ⅰ染色体均发现较明亮的红色荧光;CD处理后细胞核和染色体的荧光明显减弱或没有荧光,说明其中存在F-肌动蛋白。  相似文献   

11.
We previously reported that mammalian FSH induced differentiation of secondary spermatogonia into primary spermatocytes in organ culture of newt testicular fragments, whereas in medium lacking FSH primary spermatocytes never appeared. Here, we investigated why spermatogonia fail to form primary spermatocytes in the absence of FSH. Spermatogonia maintained proliferative activity and viability at about half the level of those cultured in the presence of FSH, progressed into the seventh generation, but became moribund during the G2/M phase. Thus, the eighth generation of spermatogonia never appeared, suggesting that cell death is the chief reason why primary spermatocytes fail to form in the absence of FSH. The presence of Dmc1, a molecular marker for the spermatocyte stage, confirmed our microscopic observations that spermatogonia differentiated into primary spermatocytes in the presence of FSH. Thus, FSH is indispensable for the completion of the last spermatogonial mitosis, a prerequisite for the conversion of germ cells from mitosis to meiosis. Because prolactin induced apoptosis in spermatogonia during the seventh generation, we propose that a checkpoint exists for the initiation of meiosis in the seventh generation whereby spermatogonia enter meiosis when the concentration ratio of FSH to prolactin is high but fail to do so when the ratio is low.  相似文献   

12.
13.
E Pinart  S Sancho  M D Briz  S Bonet  E Badia 《Teratology》1999,60(4):209-214
Unilateral abdominal cryptorchidism has usually been correlated with abnormalities in the spermatogenic activity of the scrotal testis. The present study describes the effects of unilateral abdominal cryptorchidism on the meiotic process in scrotal testes from postpubertal boars. The percentage of primary spermatocytes, secondary spermatocytes, and round spermatids was evaluated in testicular smears from scrotal testes of healthy boars and of right-sided unilateral abdominal cryptorchid boars. As compared to the scrotal testes of healthy boars, the scrotal testes of unilateral abdominal cryptorchid boars showed low transformation from primary to secondary spermatocytes (meiosis I), but normal transformation from secondary spermatocytes to round spermatids (meiosis II). The data obtained indicate that spontaneous unilateral abdominal cryptorchidism on the right side induced partial arrest of spermatogenesis at the primary spermatocyte stage that was attributed to anomalies in Sertoli-cell activity. Abnormal paracrine signals from altered Sertoli cells could have resulted in either disturbed mitosis, which led to the formation of spermatocytes with an abnormal DNA content, or abnormalities in the metabolic activity and the organization of the cytoskeleton of primary spermatocytes.  相似文献   

14.
Proacrosin biosynthesis timing during human spermatogenesis has been studied using the monoclonal antibody 4D4 (mAb 4D4). Frozen and paraffin-embedded sections of testicular biopsies were labelled by standard indirect immunofluorescence and avidin-biotin immunoperoxidase procedures. The labelling specificity was checked by immunochemistry assays on unrelated tissues and by western blotting of testis extracts showing that only the 50-55 x 10(3) Mr proacrosin was recognized by mAb 4D4. Proacrosin was first observed in the Golgi region of midpachytene primary spermatocytes. In late pachytene primary spermatocytes, proacrosin was observed in two regions located at opposite nuclear poles. During the subsequent steps of the first meiotic division, the two bodies containing proacrosin were located: (i) on opposite sides of the equatorial plate during metaphase; (ii) along the microtubular spindle during anaphase; and (iii) close to each chromosomal aggregate during telophase. Two bodies containing proacrosin were still observed in interphasic secondary spermatocytes. The single labelled area observed in early spermatids was found to increase considerably in size during spermiogenesis. Anomalies of proacrosin scattering were observed in patients with Golgi complex partitioning failure. These data reveal proacrosin biosynthesis during diploid and haploid phases of human spermatogenesis and the proacrosin partitioning pattern during meiosis.  相似文献   

15.
We previously showed that mammalian FSH stimulates the proliferation of newt spermatogonia and induces their differentiation into primary spermatocytes in vitro. In the current study, to examine a possibility that stem cell factor (SCF) is involved in the proliferation of newt spermatogonia and/or their differentiation into primary spermatocytes, human recombinant SCF (rhSCF) was added to organ culture of testicular fragments. rhSCF was found to stimulate the spermatogonial proliferation and the spermatogonia progressed to the seventh generation that is the penultimate stage before primary spermatocyte stage. However, the spermatogonia did not differentiate into primary spermatocytes, but instead died of apoptosis. These results indicate that rhSCF promotes the proliferation of newt spermatogonia, but not the initiation of meiosis.  相似文献   

16.
In the germ line of the midge Acricotopus lucidus, an unequal chromosome segregation occurs in the last gonial mitosis prior to meiosis. This results in one daughter cell receiving only somatic chromosomes (Ss), whereas the other cell is given all the so-called germ line limited chromosomes (Ks) in addition to the Ss. The cytokinesis following this differential mitosis is incomplete and the daughter cells remain connected by a permanent cytoplasmic bridge. The cell with the Ss and Ks develops into a primary oocyte or spermatocyte, whereas the cell containing only Ss differentiates as a nurse cell in the female or as an aberrant spermatocyte in the male. When the primary spermatocyte enters meiosis, the Ss in the connected aberrant spermatocyte undergo chromosome condensation but the aberrant spermatocyte remains undivided, with the condensed metaphase status and inactivation of the Ss persisting during both meiotic divisions. These events indicate a programmed inactivation of all chromosomes in the aberrant spermatocyte at the beginning of meiosis. The alterations in the microtubule arrangements and of the distribution of mitochondria in the spermatocytes during meiosis have been followed via live-cell fluorescence labelling with the TubulinTracker and MitoTracker reagents and by transmission electron microscopy. The observations reveal a hyperamplification of the centrosomes and the formation of tetrapolar asters in the non-dividing aberrant spermatocytes containing the condensed Ss. The programmed inactivation of the Ss in the aberrant spermatocyte is suggested to have developed during evolution to inhibit the entry of the aberrant spermatocytes into meiosis, thereby preventing the formation of sperms containing only Ss but no Ks.  相似文献   

17.
 In order to isolate genes whose expression is up-regulated after the initiation of meiosis, we screened a cDNA expression library of newt testes with antiserum against homogenates of testes derived from the spermatogonial and spermatocyte stages. We report the isolation of spermatocyte-specific cDNA clones encoding a newt homologue of the calcium-dependent phospholipid-binding protein, annexin V. Northern blot analysis showed that newt annexin V mRNA was 1.7 kb in length and was expressed strongly in testes, but weakly in other organs. In situ hybridization revealed that the expression of newt annexin mRNA was barely observed in spermatogonia, but increased significantly in leptotene-zygotene primary spermatocytes and reached a maximum level in pachytene spermatocytes and round spermatids. The newt annexin V cDNA predicted a 323-amino acid protein and had a 68% homology to human annexin V. The predicted amino acid sequence contained a conserved 4-fold internal repeat of approximately 70 residues like other annexin proteins. Immunoblot analysis using the monoclonal antibody against newt annexin V showed that the protein was expressed scarcely in spermatogonia but was abundantly expressed in stages from primary spermatocytes to spermatids; this pattern was consistent to that of the mRNA. Immunohistochemical analysis revealed that newt annexin V was localized in the cytoplasm of the spermatogenic cells, but not in somatic cells such as Sertoli cells or pericystic cells. These results indicate that the expression of newt annexin V is up-regulated in the spermatogenic cells after the initiation of meiosis and suggest that newt annexin V plays an important role in spermatogenesis. Received: 8 December 1995 / Accepted: 12 February 1996 Edited by H. Shimada/D. Tautz  相似文献   

18.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

19.
Univalents at the first meiotic metaphase in mouse spermatocytes occur mainly in the XY pair, making it difficult to compare the amounts of univalency in males and females. In this study, the amounts of autosomal univalency in male and female meiosis were compared using the model strain CBA-T6, in which univalency of the small marker autosome pair T6 has been shown to occur very frequently in spermatocytes. Mice from inbred CBA and DBA strains were also analysed. The total frequencies of univalency (sex chromosomes plus autosomes) in metaphase I spermatocytes were 45.6% in CBA, 36.9% in CBA-T6, and 37.3% in DBA males. The aneuploidy in metaphase II spermatocytes ranged from 1.4 to 3% in these strains, which was in agreement with previous findings that most primary spermatocytes with abnormal chromosome configurations are arrested in their development before metaphase II. In the CBA-T6 strain, autosomal univalency at metaphase I mostly involved chromosome pair T6; however, its frequency differed significantly between the sexes, amounting to 18.9% in spermatocytes and 4.3% in oocytes. In the CBA strain, autosomal univalents at metaphase I were seen in 7.7% of the spermatocytes and 1.4% of the oocytes and, in DBA mice, in 4.9% of the spermatocytes and 3.8% of the oocytes. However, in DBA oocytes, when univalency occurred it usually concerned a greater number of bivalents in one cell (range: 2-19 disjoined bivalents), a phenomenon very rare in males of this strain. This study shows that univalent formation differs between the male and female types of meiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号