首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn2+ binding to vesicles prepared from several different species of anionic phospholipids was determined as a function of temperature by electron paramagnetic resonance (EPR). The Mn2+ affinities of phosphatidylserine, cardiolipin and egg yolk phosphatidylglycerol all increased monitonically with temperature.Vesicles prepared from hydrogenated and natural (bovine) phosphatidylserine were monitored with respect to hydrocarbon chain fluidity as well as Mn2+ binding. Contrary to expectations based on surface potential considerations, the affinity of phosphatidylserine for divalent cations was apparently not lowered in going from the gel state to the liquid crystalline state of the bilayer. The results are instead consistent with an enhancement in cation affinity with increased lipid fluidity.Dipalmitoyl phosphatidylglycerol vesicle fluidity and Mn2+ binding were also studied with EPR. A large reduction in the measured Mn2+ affinity accompanied melting of the phospholipid, but observed hysteresis in the temperature dependence of the binding render uncertain any simple explanation based on changes in surface potential. Supplementary light scattering data indicated that vesicle aggregation was involved in the hysteresis phenomena.  相似文献   

2.
In the current understanding of exocytosis at the nerve terminal, the C2 domain of synaptotagmin (C2A) is presumed to bind Ca2+ and the membrane in a stepwise fashion: cation then membrane as cation increases the affinity of protein for membrane. Fluorescence spectroscopy data were gathered over a variety of lipid and Ca2+ concentrations, enabling the rigorous application of microscopic binding models derived from partition functions to differentiate between Ca2+ and phosphatidylserine contributions to binding. The data presented here are in variance with previously published models, which were based on the Hill approximation. Rather, the data are consistent with two forms of cooperativity that modulate the responsiveness of C2A: in Ca2+ binding to a network of three cation sites and in interaction with the membrane surface. We suggest synaptotagmin I C2A is preassociated with the synaptic vesicle membrane or nerve terminal. In this state, upon Ca2+ influx the protein will bind the three Ca2+ ions immediately and with high cooperativity. Thus, membrane association creates a high-affinity Ca2+ switch that is the basis for the role of synaptotagmin I in Ca2+-regulated exocytosis. Based on this model, we discuss the implications of protein-induced phosphatidylserine demixing to the exocytotic process.  相似文献   

3.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 degrees C, while that for phosphatidylserine spin label had only one transition at 30 degrees C. When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogenous fluidity. Mg2+ or Mg2+ + ATP prevented the hemolysis-induced spectral changed. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 degrees C and vanishing at 40 degrees C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

4.
R R Poyner  G H Reed 《Biochemistry》1992,31(31):7166-7173
Phosphonoacetohydroxamate (PhAH) is a tight-binding (Ki = 15 pM) inhibitor of enolase that is believed to mimic the aci-carboxylate form of the intermediate carbanion in the reaction [Anderson, V. E., Weiss, P. M., & Cleland, W. W. (1984) Biochemistry 23, 2779]. Electron paramagnetic resonance (EPR) spectroscopy of Mn2+ has been used to map sites of interaction of PhAH with the two divalent cations at the active site of enolase from bakers' yeast. EPR spectra of enolase-PhAH complexes containing two Mn2+ bound at the active site contain multiple fine structure transitions each with a 45-G 55Mn hyperfine spacing that is a characteristic of spin exchange coupled pairs of Mn2+. Magnetically dilute complexes were obtained by preparation of specific Mg2+/Mn2+ hybrid complexes by manipulating the order of addition of the divalent metal species. Thus, Mn2+ was placed in the higher affinity site by addition of 1 equiv of Mn2+ to a solution of enolase and PhAH, followed by addition of 1 equiv of Mg2+. Reversing the order of addition of Mg2+ and Mn2+ placed Mn2+ in the lower affinity site. Regiospecifically 17O-labeled forms of PhAH were prepared, and the binding of the functional groups on PhAH to Mn2+ at the two metal ion sites was determined from the presence or absence of 17O superhyperfine coupling in the EPR signals. The hydroxamate oxygen is a ligand of Mn2+ at the higher affinity site, a phosphonate oxygen is a ligand of Mn2+ at the lower affinity site, and the carbonyl oxygen is a mu-O bridge of the two metal ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
EPR studies of Mn2+ binding to bovine pancreatic deoxyribonuclease I show that the enzyme can bind three Mn2+ ions at pH 7.5 and 2 degrees. Two sites bind Mn2+ strongly, with a Kd of 10(-4)M, and the third binds Mn2+ weakly, with a Kd of 10(-3)M. Ca2+ competes with the two strong sites, whereas Mg2+ competes only with one of them, indicating that both sites are not equivalent. Mn2+ binding to DNA has been confirmed by EPR measurements. Two types of sites, with different affinities for Mn2+ binding, were found on DNA molecules, one with a Kd of 1.2 times 10(-4)M and the other with a Kd of 10(-3)M. Mg2+ ions can displace Mn2+ from the high affinity sites, but not from the low affinity sites. These results suggest the Mn2+ binds not only to the phosphate groups, but also to the electron donor groups of the base rings.  相似文献   

6.
Studies on membrane fusion. III. The role of calcium-induced phase changes.   总被引:12,自引:0,他引:12  
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture electron microscopy. These data are discussed in relation to information concerning Ca2+ binding, charge neutralization, molecular packing, vesicle aggregation, phase transitions, phase separations and vesicle fusion. The results indicate that at Ca2+ concentrations of 1.0-2.0 mM, a highly cooperative phenomenon occurs which results in increased vesicle permeability, aggregation and fusion of the vesicles. Under these conditions the hydrocarbon chains of the lipid bilayers undergo a phase change from a fluid to a crystalline state. The aggregation of vesicles that is observed during fusion is not sufficient range of 2.0-5.0 mM induces aggregation of phosphatidylserine vesicles but no significant fusion nor a phase change. From the effect of variations in pH, temperature, Ca2+ and Mg2+ concentration on the fusion of vesicles, it is concluded that the key event leading to vesicle membrane fusion is the isothermic phase change induced by the bivalent metals. It is proposed that this phase change induces a transient destabilization of the bilayer membranes that become susceptible to fusion at domain boundaries.  相似文献   

7.
F Rusnak  L Yu  S Todorovic  P Mertz 《Biochemistry》1999,38(21):6943-6952
The interaction of bacteriophage lambda protein phosphatase with Mn2+ was studied using biochemical techniques and electron paramagnetic resonance spectrometry. Reconstitution of bacteriophage lambda protein phosphatase in the presence of excess MnCl2 followed by rapid desalting over a gel filtration column resulted in the retention of approximately 1 equiv of Mn2+ ion bound to the protein. This was determined by metal analyses and low-temperature EPR spectrometry, the latter of which provided evidence of a mononuclear high-spin Mn2+ ion in a ligand environment of oxygen and nitrogen atoms. The Mn2+-reconstituted enzyme exhibited negligible phosphatase activity in the absence of added MnCl2. The EPR spectrum of the mononuclear species disappeared upon the addition of a second equivalent of Mn2+ and was replaced by a spectrum attributed to an exchange-coupled (Mn2+)2 cluster. EPR spectra of the dinuclear (Mn2+)2 cluster were characterized by the presence of multiline features with a hyperfine splitting of 39 G. Temperature-dependent studies indicated that these features arose from an excited state. Titrations of the apoprotein with MnCl2 provided evidence of one Mn2+ binding site with a micromolar affinity and at least one additional Mn2+ site with a 100-fold lower affinity. The dependence of the phosphatase activity on Mn2+ concentration indicates that full enzyme activity probably requires occupation of both Mn2+ sites. These results are discussed in the context of divalent metal ion activation of this enzyme and possible roles for Mn2+ activation of other serine/threonine protein phosphatases.  相似文献   

8.
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture electron microscopy. These data are discussed in relation to information concerning Ca2+ binding, charge neutralization, molecular packing, vesicle aggregation, phase transitions, phase separations and vesicle fusion.The results indicate that at Ca2+ concentrations of 1.0–2.0 mM, a highly cooperative phenomenon occurs which results in increased vesicle permeability, aggregation and fusion of the vesicles. Under these conditions the hydrocarbon chains of the lipid bilayers undergo a phase change from a fluid to a crystalline state. The aggregation of vesicles that is observed during fusion is not sufficient in itself to induce fusion without a concomitant phase change. Mg2+ in the range of 2.0–5.0 mM induces aggregation of phosphatidylserine vesicles but no significant fusion nor a phase change.From the effect of variations in pH, temperature, Ca2+ and Mg2+ concentration on the fusion of vesicles, it is concluded that the key event leading to vesicle membrane fusion is the isothermic phase change induced by the bivalent metals. It is proposed that this phase change induces a transient destabilization of the bilayer membranes that become susceptible to fusion at domain boundaries.  相似文献   

9.
The binding of Ca2+ to monolayers and bilayers of phosphatidylserine has been investigated as a function of pH, ionic strength (NaCl concentration) and Ca2+ concentration using surface and colloid chemical techniques. The molar ratio of lipid to bound calcium decreases to 2 as the Ca2+ concentration is increased to about 0.1 mM. At [Ca2+] greater than 0.1 mM a 1:1 complex is formed. The apparent binding constant Ka ranges from about approximately 10(6) - 10(4) l/mol depending on the Ca2+ concentration. After allowing for electrostatic effects and neighbour group interactions, the intrinsic binding constant Ki of the phosphorylserine polar group at pH 7 (I = 0.01 M), where it carries a net negative charge of one, is approximately 10(4) l/mol; consistent values for Ki were obtained using several independent approaches. Ka for Ca2+ binding decreases with increasing NaCl concentration because the monovalent cations compete with Ca2+ for the same binding site. Na+ and K+ are equally effective in displacing 45Ca2+ adsorbed to monolayers of phosphatidylserine, both with respect to the kinetics and the equilibrium of the displacement. Ka for the reaction between phosphatidylserine and monovalent cations is about 10(3)-fold smaller than that of Ca2+. An investigation of the binding of Mn2+ to phosphatidylserine by both surface chemical and nuclear magnetic resonance methods shows that this cation has a similar binding constant to that of Ca2+. The Ca2+-binding capabilities of monolayers containing only carboxyl groups (i.e. arachidic acid) and phosphodiester groups (i.e. dicetyl phosphate) have also been determined; the apparent pK for the - COOH group in monolayers is larger than or equal to 9 and that for the phosphodiester group is less than 4. Since these groups do not retain the same pK values when they are in close proximity in the phosphorylserine group, the relative contributions of the two groups to the binding of Ca2+ to phosphatidylserine is not obvious.  相似文献   

10.
A study was made on the correlation between the degree of membrane fusion and surface tension increase of phosphatidic acid membranes caused by divalent cations. Membrane fusion was followed by the Tb3+/dipicolinic acid assay, monitoring the fluorescent intensity for mixing of the internal aqueous contents of small unilamellar lipid vesicles. The surface tension and surface potential of monolayers made of the same lipids as used in the fusion experiments were measured as a function of divalent cation concentration. It was found that the 'threshold' concentration to induce massive vesicle membrane fusion was the same for Ca2+ and Mg2+, and that the surface tension increase in the monolayer, induced by changing divalent cation concentration from zero to a concentration which corresponds to its threshold value, inducing vesicle membrane fusion, was approximately the same: 6.3 dyn/cm for both Ca2+ and Mg2+. Both the divalent cation's threshold concentrations as well as the surface tension change corresponding to the threshold concentration for the phosphatidic acid membrane were smaller than those for the phosphatidylserine membrane. The different fusion capability of these divalent cations for phosphatidic acid and phosphatidylserine membranes is discussed in terms of the different ion binding capabilities of these ions to the membranes.  相似文献   

11.
Conformational changes in the bacteriorhodopsin molecule related to the blue to purple transition have been monitored using UV-difference spectrophotometry. Mn2+ binding to the deionized blue membrane, which restores the purple form, promotes the appearance of a difference spectrum that can be interpreted as arising from tryptophan perturbation. Similar difference spectra were found upon pH increase of the blue membrane suspensions. Such pH increase yields the deionized purple membrane and shows an apparent pK of 5.4. Binding of Hg2+ to the blue membrane does not induce any UV-difference spectrum or change the apparent pK of the transition. ESR studies of Mn2+ binding show that in the pink membrane several high and medium affinity binding sites have been converted to low affinity ones. In the NaBH4-reduced membrane, a medium affinity site has been converted to a low affinity site. Upon Mn2+ binding to the reduced membrane or pH increase, absorption changes were found in the visible region which showed a dependence upon bound Mn2+ as well as an apparent pK similar to those of the nonreduced membrane. It is proposed that the functional form of the membrane depends primarily on the deprotonated state of a control group and that cation binding only affects the pK of this deprotonation through changes in the membrane surface potential.  相似文献   

12.
根据顺磁离子Mn~(2+)的取代特性,用EPR方法研究了钙调神经磷酸酶B亚基与其4个Ca~(2+)的结合位点,以及它们亲和力的细微差别。并同时进行了钙调素的对比研究。实验和Scatchard作图表明,B亚基有4个Ca~(2+)结合位点,2个高亲和力结合位点,其解离常数为4×10~(-6)mol/L;2个低亲和力结合位点,解离常数为9×10~(-5)mol/L。钙调素也有2个Ca~(2+)高亲和力结合位点,其解离常数为8×10~(-6)mol/L,2个低亲和力结合位点,解离常数为7×10~(-5)mol/L。钙调神经磷酸酶B亚基和钙调素Mn~(2+)结合位点的EPR研究对B亚基和钙调素在共同调节钙调神经磷酸酶中的作用提供了有用的信息。  相似文献   

13.
The lipid dependency of apocytochrome c binding to model membranes and of the translocation of the precursor protein across these membranes was studied by using large unilamellar, trypsin-containing vesicles. These vesicles were improved with respect to those used in a previous article (Rietveld, A., and de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6706), in the sense that a lower amount of trypsin was enclosed. In mixed egg phosphatidylcholine/bovine brain phosphatidylserine vesicles, both the Kd of apocytochrome c binding (about 20 microM) and the number of phosphatidylserine molecules interacting with the protein was found to be constant. When the phosphatidylserine fraction in the vesicles is more than 15-30% apocytochrome c addition results in the exposure of (a part of) the protein to the internal, trypsin-containing vesicle medium, which process we conceive as a translocation event. Also the interaction of apocytochrome c with vesicles composed of phosphatidylcholine and another acidic phospholipid in a 1:1 ratio, leads to the translocation of the protein across the model membrane. The affinity of this binding was found to be in the order cardiolipin greater than phosphatidylglycerol greater than phosphatidylinositol greater than phosphatidylserine. By varying the lipid composition of the vesicles, it could be demonstrated that the translocation requires a fluid bilayer. In addition, protein specificity was shown for the translocation process. Although apocytochrome c-lipid interaction causes vesicle aggregation, fusion by lipid mixing could not be detected. Due to the apocytochrome c-lipid interaction also, protein aggregates and oligomers have been formed. These results will be discussed in the light of a model for translocation of a precursor protein across a model membrane. The relevance for the mitochondrial system will also be discussed.  相似文献   

14.
There are clusters of basic amino acids on many cytoplasmic proteins that bind transiently to membranes (e.g., protein kinase C) as well as on the cytoplasmic domain of many intrinsic membrane proteins (e.g., glycophorin). To explore the possibility that these basic residues bind electrostatically to monovalent acidic lipids, we studied the binding of the peptides Lysn and Argn (n = 1-5) to bilayer membranes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). We made electrophoretic mobility measurements using multilamellar vesicles, fluorescence and equilibrium binding measurements using large unilamellar vesicles, and surface potential measurements using monolayers. None of the peptides bound to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but all bound to vesicles formed from PC/PS or PC/PG mixtures. None of the peptides exhibited specificity between PS and PG. Each lysine residue that was added to Lys2 decreased by one order of magnitude the concentration of peptide required to reverse the charge on the vesicle; equivalently it increased by one order of magnitude the binding affinity of the peptides for the PS vesicles. The simplest explanation is that each added lysine binds independently to a separate PS with a microscopic association constant of 10 M-1 or a free energy of approximately 1.4 kcal/mol. Similar, but not identical, results were obtained with the Argn peptides. A simple theoretical model combines the Gouy-Chapman theory (which accounts for the nonspecific electrostatic accumulation of the peptides in the aqueous diffuse double layer adjacent to the membrane) with mass action equations (which account for the binding of the peptides to greater than 1 PS). This model can account qualitatively for the dependence of binding on both the number of basic residues in the peptides and the mole fraction of PS in the membrane.  相似文献   

15.
J W Orr  A C Newton 《Biochemistry》1992,31(19):4667-4673
The roles of specific and nonspecific interactions in the regulation of protein kinase C by lipid have been examined. Binding and activity measurements reveal two mechanisms by which protein kinase C interacts with membranes: (1) a specific binding to the activating lipid phosphatidylserine and (2) a nonspecific binding to nonactivating, acidic lipids. The specific interaction with phosphatidylserine is relatively insensitive to ionic strength, surface charge, and the presence of nonactivating lipids. The two second messengers of the kinase, diacylglycerol and Ca2+, increase markedly the affinity of the kinase for phosphatidylserine. In contrast, the nonspecific interaction is sensitive to ionic strength and surface charge, and is unaffected by diacylglycerol. These results suggest that electrostatic interactions promote the binding of protein kinase C to membranes but the cooperative and selective binding of phosphatidylserine is the dominant driving force in a productive protein-lipid interaction.  相似文献   

16.
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction.  相似文献   

17.
Ross M  Gerke V  Steinem C 《Biochemistry》2003,42(10):3131-3141
By means of the quartz crystal microbalance (QCM) technique, we investigated the interaction of porcine heterotetrametric annexin A2t with solid supported lipid membranes. Dissociation and rate constants of annexin A2t binding to various lipid mixtures were determined as a function of Ca2+ concentrations in solution. In contrast to what has been observed for annexin A1, the binding affinity and kinetics of annexin A2t binding are not influenced by cholesterol. In the experimental setup chosen, the annexin A2t binding is strictly Ca2+-dependent and only affected by the amount of phosphatidylserine (PS) in the membrane and the Ca2+ concentration in solution. By Ca2+-titration experiments at constant annexin A2t concentration, we investigated the reversibility of annexin A2t adsorption and desorption. Surprisingly, Ca2+-titration curves display a significant hysteresis. Protein desorption curves starting from annexin A2t bound to the membrane at 1 mM CaCl2 exhibit high cooperativity with half-maximum Ca2+ concentrations in the submicromolar range. However, protein adsorption curves starting from an EGTA-containing solution with soluble annexin A2t always show two inflection points upon addition of Ca2+ ions. These two inflection points may be indicative of two protein populations differently bound to the solid-supported membrane. The ratio of these two annexin A2t populations depends on the amount of PS molecules and cholesterol in the membrane as well as on the Ca2+ concentration. We propose a model discussing the results obtained in terms of two binding sites differing in their affinity due to lipid rearrangement.  相似文献   

18.
Modulation of vitronectin receptor binding by membrane lipid composition.   总被引:5,自引:0,他引:5  
The vitronectin (Vn) receptor belongs to the integrin family of proteins and although its biochemical structure is fully characterized little is known about its binding affinity and specificity. We report here that Vn receptor binding to different matrix proteins is influenced by the surrounding lipid composition of the membrane. Human placenta affinity purified Vn receptor was inserted into liposomes of different composition: (i) phosphatidylcholine (PC); (ii) PC+phosphatidylethanolamine (PE); (iii) PC+PE+phosphatidylserine (PS) + phosphatidylinositol (PI) + cholesterol (chol). The amount of purified material that could be incorporated into the three lipid vesicle preparations was proportional to the efficiency of the vesicle formation that increased from PC (38%) to PC+PE and PC+PE+PS+PI+chol (about 50%) vesicles. Electron microscopy analysis showed that the homogeneity and size of the three liposome preparations were comparable (20-nm diameter) but their binding capacity to a series of substrates differed widely. Vn receptor inserted in PC liposomes bound only Vn, but when it was inserted in PC+PE and PC+PE+PS+PI+chol liposomes it also attached to von Willebrand factor (vWF) and fibronectin (Fn). Vn receptor had higher binding capacity for substrates when it was inserted in PC+PE+PS+PI+chol than PC+PE liposomes. Antibodies to Vn receptor blocked Vn receptor liposome binding to Vn, vWF, and Fn. The intrinsic emission fluorescence spectrum of the Vn receptor reconstituted in PC+PE+PS+PI+chol liposomes was blue-shifted in relation to PC liposomes, suggesting a conformational change of the receptor in the membranes. These data provide direct evidence that the Vn receptor is "promiscuous" and can associate with Vn, vWF and Fn. The nature of the membrane lipid composition surrounding the receptor could thus influence its binding affinity, possibly by changing its conformation or exposure or both.  相似文献   

19.
The mitochondria were prepared from apples cv. Starking Delicious which were sensitive to chilling injury and apples cv. Rails Janet which were not sensitive to chilling injury. The content of unsaturated fatty acids in the Rails Janet mitochondria was higher than that in the Starking Delicious mitochondria. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid, phosphatidylserine, diphosphatidylglycerol (cardiolipin) and mono- and digalactosyldiglyceride were identified as the conjugated lipid components. The PC/PE ratios were 0.74 and 0.14, respectively, in the mitochondrial phospholipid fraction of Rails Janet and Starking Delicious apples. The higher ratio of PC/PE and unsaturated fatty acid contents in Rails Janet than those in Starking Delicious may cause the resistance to chilling injury in Rails Janet by playing a role in lowering of the phase transition temperature. These facts were thought to contribute largely to the flexibility, fluidity and the function of transport of the membranes in the cold state.  相似文献   

20.
The influence of the phospholipid composition and fluidity on protein kinase A and protein kinase C activities in rat liver plasma membranes was studied. We observed that enrichment of membranes with phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine and dioleoylphosphatidylcholine caused activation of both protein kinases. Phosphatidylglycerol was found to be most effective activator. The enrichment of plasma membranes with dipalmitoylphosphatidylcholine and sphingomyelin led to decrease in protein kinase A and C activities. The stimulatory effect of phosphatidylglycerol was confirmed in plasma membranes pretreated with exogenous phospholipases A2, C and D, and subsequently enriched with phosphatidylglycerol. We suggest that besides the specific presence of definite phospholipids protein kinases A and C require a more fluid membrane lipid bilayer to display an optimal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号