首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins undergo an apparent dynamical transition on temperature variation that has been correlated with the onset of function. The transition in the mean-square displacement, , that is observed using a spectrometer or computer simulation, depends on the relationship between the timescales of the relaxation processes activated and the timescale accessible to the instrument or simulation. Models are described of two extreme situations---an "equilibrium" model, in which the long-time dynamics changes with temperature and all motions are resolved by the instrument used; and a "frequency window" model, in which there is no change in the long-time dynamics but as the temperature increases, the relaxation frequencies move into the instrumental range. Here we demonstrate that the latter, frequency-window model can describe the temperature and timescale dependences of both the intermediate neutron scattering function and derived from molecular dynamics simulations of a small protein in a cryosolution. The frequency-window model also describes the energy-resolution and temperature-dependences of obtained from experimental neutron scattering on glutamate dehydrogenase in the same solvent. Although equilibrium effects should also contribute to dynamical transitions in proteins, the present results suggests that frequency-window effects can play a role in the simulations and experiments examined. Finally, misquotations of previous findings are discussed in the context of solvent activation of protein dynamics and the possible relationship of this to activity.  相似文献   

2.
Glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH) activity of 13 cold-adapted strains, isolated from cold soils and showing GDH and/or LDH activity in spectrophotometric assays, were revealed by the use of electrophoresis on a nondenaturing acrylamide gel (zymogram). Psychrophilic strains were grown at 4 degrees C and 10 degrees C and the psychrotolerant strains at 4 degrees, 20 degrees and 28 degrees C. Incubation with the specific substrate and staining were done at 4, 28 or 37 degrees C. In the most cold-adapted strains, LDH and GDH production was high at 4 degrees C. In psychrotrophic strains, enzyme production and activity were greater at 20 or 28 degrees C than at lower temperatures. LDH remained active up to 37 degrees C while GDH activity was more thermolabile. GDH activity was NAD-dependent in some psychrophilic strains. In other strains, it was dependent on NAD(P) only or on both NAD and NAD(P). Two bands were seen for GDH or LDH activity in some strains. This method, which does not require a dialysis step, can be used to study the influence of temperature on enzyme production and activity, and the co-factor dependence. It detects phenotypic differences between isozymes, providing data for systematics.  相似文献   

3.
Molecular dynamics simulation, quasielastic neutron scattering and analytical theory are combined to characterize diffusive motions in a hydrated protein, C-phycocyanin. The simulation-derived scattering function is in approximate agreement with experiment and is decomposed to determine the essential contributions. It is found that the geometry of the atomic motions can be modeled as diffusion in spheres with a distribution of radii. The time dependence of the dynamics follows stretched exponential behavior, reflecting a distribution of relaxation times. The average side chain and backbone dynamics are quantified and compared. The dynamical parameters are shown to present a smooth variation with distance from the core of the protein. Moving outward from the center of the protein there is a progressive increase of the mean sphere size, accompanied by a narrowing and shifting to shorter times of the relaxation time distribution. This smooth, "radially softening" dynamics may have important consequences for protein function. It also raises the possibility that the dynamical or "glass" transition with temperature observed experimentally in proteins might be depth dependent, involving, as the temperature decreases, progressive freezing out of the anharmonic dynamics with increasing distance from the center of the protein.  相似文献   

4.
Enzyme activity below the dynamical transition at 220 K.   总被引:4,自引:1,他引:3       下载免费PDF全文
Enzyme activity requires the activation of anharmonic motions, such as jumps between potential energy wells. However, in general, the forms and time scales of the functionally important anharmonic dynamics coupled to motion along the reaction coordinate remain to be determined. In particular, the question arises whether the temperature-dependent dynamical transition from harmonic to anharmonic motion in proteins, which has been observed experimentally and using molecular dynamics simulation, involves the activation of motions required for enzyme function. Here we present parallel measurements of the activity and dynamics of a cryosolution of glutamate dehydrogenase as a function of temperature. The dynamical atomic fluctuations faster than approximately 100 ps were determined using neutron scattering. The results show that the enzyme remains active below the dynamical transition observed at approximately 220 K, i.e., at temperatures where no anharmonic motion is detected. Furthermore, the activity shows no significant deviation from Arrhenius behavior down to 190 K. The results indicate that the observed transition in the enzyme's dynamics is decoupled from the rate-limiting step along the reaction coordinate.  相似文献   

5.
In the investigated 14 day old triticale seedlings a much higher GDH activity was observed in roots than in leaves. The enzyme from the roots was purified up to the state of homogeneity (about 400 fold). The purified enzyme showed a higher activity in the presence of reduced coenzyme forms (NAD(P)H) than their oxidated forms. In the presence of NAD(P)H the enzyme showed absolute specificity to 2-oxoglutarate and in cooperation with NAD(P)+ to L-glutamate. The Km values determined for particular substrates indicate a high affinity of NADPH-GDH to ammonium ions. Optimum pH, temperature and thermostability of GDH depended on the type and form of the coenzyme. Molecular mass of purified enzyme was 257 kDa. It seems that native GDH is composed of six identical subunits of the molecular mass 42.5 kDa.  相似文献   

6.
Components of biological macromolecules, complexes and membranes are animated by motions occurring over a wide range of time and length scales, the synergy of which is at the basis of biological activity. Understanding biological function thus requires a detailed analysis of the underlying dynamical heterogeneity. Neutron scattering, using specific isotope labeling, and molecular dynamics simulations were combined in order to study the dynamics of specific amino acid types in bacteriorhodopsin within the purple membrane (PM) of Halobacterium salinarum. Motions of leucine, isoleucine and tyrosine residues on the pico- to nanosecond time scale were examined separately as a function of temperature from 20 to 300 K. The dynamics of the three residue types displayed different temperature dependence: isoleucine residues have larger displacements compared to the global PM above 120 K; leucine residues have displacements similar to that of PM in the entire temperature range studied; and tyrosine residues have displacements smaller than that of the average membrane in an intermediate temperature range. Experimental features were mostly well reproduced by molecular dynamics simulations performed at five temperatures, which allowed the dynamical characterisation of the amino acids under study as a function of local environment. The resulting dynamical map of bacteriorhodopsin revealed that movements of a specific residue are determined by both its environment and its residue type.  相似文献   

7.
Enzymes representative of carbohydrate and nitrogen metabolism were screened for their presence and activity amongst species of the genus Fusobacterium. Glutamate dehydrogenase (GDH) was reliably detected in all 25 strains studied. The pH profile of this enzyme and the DNA base composition of selected strains were also determined. DNA base composition of selected strains ranged between 28-32.9 mol% G + C. GDH was active between pH 7.5-11.5 but two pH profiles of activity, with optima at 9.5 and 10.5, were discernible among species. Apart from Fusobacterium nucleatum, which had a heterogeneous enzyme pattern, the GDH electrophoretic mobility was constant within a species but in a few cases the enzyme bands overlapped. A combination of the pH profile, the GDH electrophoretic pattern and the DNA base composition provided clear separation of the test organisms into discrete groups; however, a larger number of strains must be examined before the full potential of these tests can be evaluated.  相似文献   

8.
Aims: To screen the glutamate dehydrogenase (GDH) activity of nonstarter lactic acid bacteria (NSLAB) and to determine the effects of temperature, pH and NaCl values used for cheese ripening on enzyme activity and expression of GDH gene. Methods and Results: A subcellular fractionation protocol and specific enzyme assays were used. The effect of temperature, pH and NaCl on enzyme activity was evaluated. The expression of GDH gene was monitored by real‐time PCR. One selected strain was also used as adjunct starter for cheese making to evaluate the catabolism of free amino acids and the production of volatile organic compounds (VOC) during cheese ripening. The cytoplasm fraction of all strains showed in vitro NADP‐dependent GDH activity. NADP‐GDH activity was markedly strain dependent and varied according to the interactions between temperature, pH and NaCl. Lactobacillus plantarum DPPMA49 showed the highest NADP‐GDH activity under temperature, pH and NaCl values found during cheese ripening. RT‐PCR analysis revealed that GDH expression of Lact. plantarum DPPMA49 was down‐expressed by low temperature (<13°C) and over‐expressed by NaCl (1·87–5·62%). According to NADP‐GDH activity, the highest level of VOC (alcohols, aldehydes, miscellaneous and carboxylic acids) was found in cheeses made with DPPMA49. Conclusions: The results of this study may be considered as an example of the influence of temperature, pH and NaCl on enzyme activity and expression of functional genes, such as GDH, in cheese‐related bacteria. Significance and Impact of the Study: It focuses on the phenotypic and molecular characterization of the NADP‐GDH in lactobacilli under cheese‐ripening conditions. The findings of this study contribute to the knowledge about enzymes involved in the catabolism of amino acids, to be used as an important selection trait for cheese strains.  相似文献   

9.
The enzyme glutamate dehydrogenase (GDH) from Escherichia coli is a hexameric protein. The stability of this enzyme was increased in the presence of Li+ in concentrations ranging from 1 to 10 mM, 1 M of sodium phosphate, or 1 M ammonium sulfate. A very significant dependence of the enzyme stability on protein concentration was found, suggesting that subunit dissociation could be the first step of GDH inactivation. This effect of enzyme concentration on its stability was not significantly decreased by the presence of 10 mM Li+. Subunit crosslinking could not be performed using neither dextran nor glutaraldehyde because both reagents readily inactivated GDH. Thus, they were discarded as crosslinking reagents and GDH was incubated in the presence of polyethyleneimine (PEI) with the aim of physically crosslinking the enzyme subunits. This incubation does not have a significant effect on enzyme activity. However, after optimization, the PEI-GDH was found to almost maintain the full initial activity after 2 h under conditions where the untreated enzyme retained only 20% of the initial activity, and the effect of the enzyme concentration on enzyme stability almost disappeared. This stabilization was maintained in the pH range 5–9, but it was lost at high ionic strength. This PEI-GDH composite was also much more stable than the unmodified enzyme in stirred systems. The results suggested that a real adsorption of the PEI on the GDH surface was required to obtain this stabilizing effect. A positive effect of Li+ on enzyme stability was maintained after enzyme surface coating with PEI, suggesting that the effects of both stabilizing agents could not be exactly based on the same mechanism. Thus, the coating of GDH surface with PEI seems to be a good alternative to have a stabilized and soluble composite of the enzyme.  相似文献   

10.
NADH-dependent glutamate dehydrogenase (GDH. EC 1. 4. 1.2) was isolated from the needles of Scots pine (Pinus sylverstris L.) grown on a rural and on a heavily polluted industrial area, and it was purified about 500 fold. The purification procedure included salt I'ractionation, ion exchange and affinity chromatography. Miehaelis constants for 2-oxoglularale (1.7 mM). for ammonium sultate (19 mM ) and for NADH (42.5 resp. 53 μM) the pH optimum (8.5) the requirements for Ca2+ ions, the temperature dependence ofl the enzyme activity (incubation from 0 to 82°C). and the relation between forest region and electrophoretie isoenzyme pattern were determined. The possible role of GDH in the adaptation of plants to ammonia assimilation (detoxification) under stress conditions, particularly with respect to air pollution, is discussed.  相似文献   

11.
The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational and functional characteristics of the enzyme. The onset of biological function at temperatures higher than approximately 25 degrees C (the hyperthermostable enzyme is essentially inactive at room temperature) was associated with a dynamical transition in the anharmonic motions domain. This transition from the nonactive to the enzymatically active conformation involved structurally similar conformational substates in the energy landscape. From the mean-square displacement of the protein atoms, the molecular flexibility and the effective force constants were calculated at different temperature zones. The results showed that the activity increases at higher temperatures where the intramolecular bonds are weakened and the overall rigidity of the protein is decreased. Further temperature increase resulted in significantly increased atomic fluctuations featuring heat denaturation of the protein.  相似文献   

12.
In a preceding paper evidence of two stationary stable states (bistability) in the specific activity of glutamine synthetase (GS) in ammonia-limited steady-state cultures of Escherichia coli ML 30 at dilution rates (D) about 0.15 h-1 was described (Müller et al. 1977). For better understanding of the regulation mechanisms leading to GS bistability chemostat experiments were performed over a wide range of dilution rates up to D = 0.8 h-1. For each steady state the specific activities of GS and glutamate dehydrogenase (GDH)--the other key enzyme of the two NH3 assimilation routes in E. coli--and in addition the remaining NH3 concentration in the culture liquid were determined. Parallel to GS bistability two states of GDH activity and NH3 concentration are found. The higher state of GS is connected with a lower GDH activity and NH3 concentration. With rising D the GS activities decrease whereas GDH activities and NH3 concentrations increase. Since no adenylation of the GS is detectable GS bistability seems to be regulated on the level of enzyme synthesis like GDH bistability. From the experimental findings a mathematical model is derived based on the bottle neck enzyme theory of growth. It describes the dependence between the specific growth rates on the one hand and the specific enzyme activities and NH3 concentration on the other. It is shown that the specific uptake rate of the limiting NH3 and the specific growth rates, respectively, depend on the simultaneous action of two bottle neck enzymes which are connected by a regulative link.  相似文献   

13.
Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.  相似文献   

14.
The Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1 contains two distinct glutamate dehydrogenases (GDH), each specific for either NADP+ or NAD+. This feature is quite unusual in bacteria, which generally have a single GDH. NADP+-dependent GDH has been purified to homogeneity and the gene encoding GDH has been cloned and expressed. The enzyme has a hexameric structure. The amino acid sequence determined by peptide and gene analyses comprises 447 residues, yielding a protein with a molecular mass of 49 285 Da. The sequence shows homology with hexameric GDHs, with identity levels of 52% and 49% with Escherichia coli and Clostridium symbiosum GDH, respectively. The coenzyme-binding fingerprint motif GXGXXG/A (common to all GDHs) has Ser at the last position in this enzyme. The overall hydrophilic character is increased and a five-residue insertion in a loop between two alpha-helices may contribute to the increase in protein flexibility. Psychrobacter sp. TAD1 GDH apparent temperature optimum is shifted towards low temperatures, whereas irreversible heat inactivation occurs at temperatures similar to those of E. coli GDH. The catalytic efficiency in the temperature range 10-30 degrees C is similar or lower than that of E. coli GDH. Unlike E. coli GDH the enzyme exhibits marked positive cooperativity towards 2-oxoglutarate and NADPH. This feature is generally absent in prokaryotic GDHs. These observations suggest a regulatory role for this GDH, the most crucial feature being the structural/functional properties required for fine regulation of activity, rather than the high catalytic efficiency and thermolability encountered in several cold-active enzymes.  相似文献   

15.
16.
The dynamical transition of proteins,concepts and misconceptions   总被引:1,自引:0,他引:1  
The dynamics of hydrated proteins and of protein crystals can be studied within a wide temperature range, since the water of hydration does not crystallize at low temperature. Instead it turns into an amorphous glassy state below 200 K. Extending the temperature range facilitates the spectral separation of different molecular processes. The conformational motions of proteins show an abrupt enhancement near 180 K, which has been called a "dynamical transition". In this contribution various aspects of the transition are critically reviewed: the role of the instrumental resolution function in extracting displacements from neutron elastic scattering data and the question of the appropriate dynamic model, discrete transitions between states of different energy versus continuous diffusion inside a harmonic well, are discussed. A decomposition of the transition involving two motional components is performed: rotational transitions of methyl groups and small scale librations of side-chains, induced by water at the protein surface. Both processes create an enhancement of the observed amplitude. The onset occurs, when their time scale becomes compatible with the resolution of the spectrometer. The reorientational rate of hydration water follows a super-Arrhenius temperature dependence, a characteristic feature of a dynamical transition. It occurs only with hydrated proteins, while the torsional motion of methyl groups takes place also in the dehydrated or solvent-vitrified system. Finally, the role of fast hydrogen bond fluctuations contributing to the amplitude enhancement is discussed.  相似文献   

17.
F-actin, a helical polymer formed by polymerization of the monomers (G-actin), plays crucial roles in various aspects of cell motility. Flexibility of F-actin has been suggested to be important for such a variety of functions. Understanding the flexibility of F-actin requires characterization of a hierarchy of dynamical properties, from internal dynamics of the actin monomers through domain motions within the monomers and relative motions between the monomers within F-actin to large-scale motions of F-actin as a whole. As a first step toward this ultimate purpose, we carried out elastic incoherent neutron scattering experiments on powders of F-actin and G-actin hydrated with D2O and characterized the internal dynamics of F-actin and G-actin. Well established techniques and analysis enabled the extraction of mean-square displacements and their temperature dependence in F-actin and in G-actin. An effective force constant analysis with a model consisting of three energy states showed that two dynamical transitions occur at ∼150 K and ∼245 K, the former of which corresponds to the onset of anharmonic motions and the latter of which couples with the transition of hydration water. It is shown that behavior of the mean-square displacements is different between G-actin and F-actin, such that G-actin is “softer” than F-actin. The differences in the internal dynamics are detected for the first time between the different structural states (the monomeric state and the polymerized state). The different behavior observed is ascribed to the differences in dynamical heterogeneity between F-actin and G-actin. Based on structural data, the assignment of the differences observed in the two samples to dynamics of specific loop regions involved in the polymerization of G-actin into F-actin is proposed.  相似文献   

18.
Glutamate dehydrogenase (GDH, EC 1.4.1.2–4) and glutamine synthetase (GS, EC 6.3.1.2) activities as well as protein content and dry matter in developing kernels of winter Triticale were determined. The relatively low level of GS activity compared to high level of NAD(P)H-dependent GDH activity during intensive filling of grains with storage compounds may indicate the participation of GDH in reductive amination of 2-oxoglutarate. The amination activity of this enzyme in all grain development phases exceeded the deaminating activity several fold. Moreover, the dynamics in the change of NAD(P)H-GDH and NAD(P)+-GDH activities were analysed in various tissues of the developing grains. The high amination activity of the enzyme in the seed coat, where the intensive protein synthesis occurs would also be an indication of the anabolic function of this enzyme.  相似文献   

19.
The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is tau = 7.95 +/- 1.02 ps for the native DHFR and tau = 20.36 +/- 1.80 ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.  相似文献   

20.
Psychrobacter sp. TAD1 is a psychrotolerant bacterium from Antarctic frozen continental water that grows from 2 to 25 degrees C with optimal growth rate at 20 degrees C. The new isolate contains two glutamate dehydrogenases (GDH), differing in their cofactor specificities, subunit sizes and arrangements, and thermal properties. NADP+-dependent GDH is a hexamer of 47 kDa subunits and it is comparable to other hexameric GDHs of family-I from bacteria and lower eukaria. The NAD+-dependent enzyme, described in this communication, has a subunit weight of 160 kDa and belongs to the novel class of GDHs with large size subunits. The enzyme is a dimer; this oligomeric arrangement has not been reported previously for GDH. Both enzymes have an apparent optimum temperature for activity of approximately 20 degrees C, but their cold activities and thermal labilities are different. The NAD+-dependent enzyme is more cold active: at 10 C it retains 50% of its maximal activity, compared with 10% for the NADP+-dependent enzyme. The NADP+-dependent enzyme is more heat stable, losing only 10% activity after heating for 30 min, compared with 95% for the NAD+-dependent enzyme. It is concluded that in Psychrobacter sp. TAD1 not only does NAD+-dependent GDH have a novel subunit molecular weight and arrangement, but that its polypeptide chains are folded differently from those of NADP+-dependent GDH, providing different cold-active properties to the two enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号