首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species.  相似文献   

9.
10.
Using a hierarchical approach, 620 non-essential single-gene yeast deletants generated by EUROFAN I were systematically screened for cell-wall-related phenotypes. By analyzing for altered sensitivity to the presence of Calcofluor white or SDS in the growth medium, altered sensitivity to sonication, or abnormal morphology, 145 (23%) mutants showing at least one cell wall-related phenotype were selected. These were screened further to identify genes potentially involved in either the biosynthesis, remodeling or coupling of cell wall macromolecules or genes involved in the overall regulation of cell wall construction and to eliminate those genes with a more general, pleiotropic effect. Ninety percent of the mutants selected from the primary tests showed additional cell wall-related phenotypes. When extrapolated to the entire yeast genome, these data indicate that over 1200 genes may directly or indirectly affect cell wall formation and its regulation. Twenty-one mutants with altered levels of beta1,3-glucan synthase activity and five Calcofluor white-resistant mutants with altered levels of chitin synthase activities were found, indicating that the corresponding genes affect beta1,3-glucan or chitin synthesis. By selecting for increased levels of specific cell wall components in the growth medium, we identified 13 genes that are possibly implicated in different steps of cell wall assembly. Furthermore, 14 mutants showed a constitutive activation of the cell wall integrity pathway, suggesting that they participate in the modulation of the pathway either directly acting as signaling components or by triggering the Slt2-dependent compensatory mechanism. In conclusion, our screening approach represents a comprehensive functional analysis on a genomic scale of gene products involved in various aspects of fungal cell wall formation.  相似文献   

11.
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in “MetaQTL” software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ2 tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.  相似文献   

12.
13.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

14.
The distinctive features of plant organs are primarily determined by organ-specific gene expression. We analyzed the expression specificity of 8809 genes in 7 organs of Arabidopsis using a cDNA macroarray system. Using relative expression (RE) values between organs, many known and unknown genes specifically expressed in each organ were identified. We also analyzed the organ specificity of various gene groups using the GRE (group relative expression) value, the average of the REs of all genes in a group. Consequently, we found that many gene groups even ribosomal protein genes, have strong organ-specific expression. Clustering of the expression profiles revealed that the 8809 genes were classified into 9 major categories. Although 3451 genes were clustered into the largest category, which showed constitutive gene expression, 266 and 1005 genes were found to be root- and silique-specific genes, respectively. By this clustering, particular gene groups which showed multi-organ-specific expression profiles, such as bud-flower-specific, stem-silique-specific or bud-flower-root-specific profiles, could be effectively identified. From these results, major features of plant organs could be characterized by their distinct profiles of global gene expression. These data of organ-specific gene expression are available at our web site: Arabidopsis thaliana Tissue-Specific Expression Database, ATTED (http://www.atted.bio.titech.ac.jp/).  相似文献   

15.
16.
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.  相似文献   

17.
18.
19.
Jung HJ 《Phytochemistry》2003,63(5):543-549
It has been hypothesized that ferulates are only deposited in the primary cell wall of grasses. To test this hypothesis, the fourth elongating, above-ground internode of maize (Zea mays l.) was sampled from three maize hybrids throughout development. Cell wall composition was determined by the Uppsala Dietary Fibre method. Ester- and ether-linked ferulates were determined by HPLC analysis of ferulic acid released from the internodes by low and high temperature alkaline treatments. Internode length increased from 9 to 152 mm over 96 days of growth, with elongation being complete in the first 12 days. More than half of the cell wall material in the maize internodes accumulated after elongation had ended. Deposition of cell wall material appeared to reach its maximum extent 40 days after sampling began, well before physiological maturity of the maize plants. Galactose and arabinose began to accumulate early in cell wall development which was presumed to be associated with primary wall growth during internode elongation. The major secondary wall constituents (analyzed as glucose, xylose, and Klason lignin) did not begin to accumulate rapidly until shortly before internode elongation ended. Ferulate ester deposition began before ferulate ethers were observed in the cell wall, but both forms of ferulate continued to accumulate in secondary cell walls, long after internode elongation had ceased. These data clearly show that contrary to the hypothesis, ferulate deposition was not restricted to the primary wall and that active lignin/polysaccharide cross-linking mediated by ferulates occurs in the secondary wall.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号