首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin-associated (UBA) domain is one of the most frequently occurring motifs that recognize ubiquitin tags. Dsk2p, a UBA-containing protein from Saccharomyces cerevisiae, is involved in the ubiquitin-proteasome proteolytic pathway and has been implicated in spindle pole duplication. Here we present the solution structure of the UBA domain of Dsk2p (Dsk2(UBA)) in complex with ubiquitin. The structure reveals that the UBA domain uses a mode of ubiquitin recognition that is similar to that of the CUE domain, another ubiquitin binding motif that shares low sequence homology but high structural similarity with UBA domains. These two domains, as well as the structurally unrelated ubiquitin binding motif UIM, provide a common, crucial recognition site for ubiquitin, comprising a hydrogen-bonding acceptor for the amide group of Gly-47, and a methyl group that packs against the hydrophobic pocket of ubiquitin formed by Leu-8, Ile-44, His-68, and Val-70.  相似文献   

2.

Background  

Ubiquitin regulates a myriad of important cellular processes through covalent attachment to its substrates. A classic role for ubiquitin is to flag proteins for destruction by the proteasome. Recent studies indicate that ubiquitin-binding proteins (e.g. Rad23, Dsk2, Rpn10) play a pivotal role in transferring ubiquitylated proteins to the proteasome. However, the specific role of these ubiquitin receptors remains poorly defined. A key to unraveling the functions of these ubiquitin receptors is to identify their cellular substrates and biological circuits they are involved in. Although many strategies have been developed for substrate isolation, the identification of physiological targets of proteolytic pathways has proven to be quite challenging.  相似文献   

3.
We developed a growth test to screen for yeast mutants defective in endoplasmic reticulum (ER) quality control and associated protein degradation (ERAD) using the membrane protein CTL*, a chimeric derivative of the classical ER degradation substrate CPY*. In a genomic screen of approximately 5,000 viable yeast deletion mutants, we identified genes necessary for ER quality control and degradation. Among the new gene products, we identified Dsk2p and Rad23p. We show that these two proteins are probably delivery factors for ubiquitinated ER substrates to the proteasome, following their removal from the membrane via the Cdc48-Ufd1-Npl4p complex. In contrast to the ERAD substrate CTG*, proteasomal degradation of a cytosolic CPY*-GFP fusion is not dependent on Dsk2p and Rad23p, indicating pathway specificity for both proteins. We propose that, in certain degradation pathways, Dsk2p, Rad23p and the trimeric Cdc48 complex function together in the delivery of ubiquitinated proteins to the proteasome, avoiding malfolded protein aggregates in the cytoplasm.  相似文献   

4.
Ubiquitin is an important cellular signal that targets proteins for degradation or regulates their functions. The previously identified BMSC-UbP protein derived from bone marrow stromal cells contains a ubiquitin-associated (UBA) domain at the C terminus that has been implicated in linking cellular processes and the ubiquitin system. Here, we report the solution NMR structure of the UBA domain of human BMSC-UbP protein and its complex with ubiquitin. The structure determination was facilitated by using a solubility-enhancement tag (SET) GB1, immunoglobulin G binding domain 1 of Streptococcal protein G. The results show that BMSC-UbP UBA domain is primarily comprised of three alpha-helices with a hydrophobic patch defined by residues within the C terminus of helix-1, loop-1, and helix-3. The M-G-I motif is similar to the M/L-G-F/Y motifs conserved in most UBA domains. Chemical shift perturbation study revealed that the UBA domain binds with the conserved five-stranded beta-sheet of ubiquitin via hydrophobic interactions with the dissociation constant (KD) of approximately 17 microM. The structural model of BMSC-UbP UBA domain complexed with ubiquitin was constructed by chemical shift mapping combined with the program HADDOCK, which is in agreement with the result from mutagenesis studies. In the complex structure, three residues (Met76, Ile78, and Leu99) of BMSC-UbP UBA form a trident anchoring the domain to the hydrophobic concave surface of ubiquitin defined by residues Leu8, Ile44, His68, and Val70. This complex structure may provide clues for BMSC-UbP functions and structural insights into the UBA domains of other ubiquitin-associated proteins that share high sequence homology with BMSC-UbP UBA domain.  相似文献   

5.
The selective recognition of ubiquitin conjugates by proteasomes is a key step in protein degradation. The receptors that mediate this step have yet to be clearly defined although specific candidates exist. Here we show that the proteasome directly recognizes ubiquitin chains through a specific subunit, Rpn10, and also recognizes chains indirectly through Rad23, a reversibly bound proteasome cofactor. Both binding events can be observed in purified biochemical systems. A block substitution in the chain-binding ubiquitin interacting motif of RPN10 when combined with a null mutation in RAD23 results in a synthetic defect in protein degradation consistent with the view that the direct and indirect recognition modes function to some extent redundantly in vivo. Rad23 and the deubiquitinating enzyme Ubp6 both bind proteasome subunit Rpn1 through N-terminal ubiquitin-like domains. Surprisingly, Rad23 and Ubp6 do not compete with each other for proteasome binding. Thus, Rpn1 may act as a scaffold to assemble on the proteasome multiple proteins that act to either bind or hydrolyze multiubiquitin chains.  相似文献   

6.
E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin-proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo.  相似文献   

7.
p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62.  相似文献   

8.
Proteins containing ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains interact with various binding partners and function as hubs during ubiquitin-mediated protein degradation. A common interaction of the budding yeast UBL-UBA proteins Rad23 and Dsk2 with the E4 ubiquitin ligase Ufd2 has been described in endoplasmic reticulum-associated degradation among other pathways. The UBL domains of Rad23 and Dsk2 play a prominent role in this process by interacting with Ufd2 and different subunits of the 26 S proteasome. Here, we report crystal structures of Ufd2 in complex with the UBL domains of Rad23 and Dsk2. The N-terminal UBL-interacting region of Ufd2 exhibits a unique sequence pattern, which is distinct from any known ubiquitin- or UBL-binding domain identified so far. Residue-specific differences exist in the interactions of these UBL domains with Ufd2, which are coupled to subtle differences in their binding affinities. The molecular details of their differential interactions point to a role for adaptive evolution in shaping these interfaces.  相似文献   

9.
Shi XZ  Yu XQ 《Amino acids》2012,42(6):2383-2391
Our previous research showed that immulectin-2 (IML-2), a C-type lectin from the tobacco hornworn, Manduca sexta, is a pattern recognition receptor (PRR) that can bind to pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PG) and β-1,3-glucan, and IML-2 plays an important role in cellular encapsulation, melanization, phagocytosis, and prophenoloxidase (proPO) activation. Unlike most mammalian C-type lectins that contain a single carbohydrate-recognition domain (CRD), IML-2 is composed of tandem CRDs, and the C-terminal CRD2 contains an extended loop, which is not present in most C-type CRDs. We hypothesize that the extended loop may participate in ligand binding, encapsulation, melanization, phagocytosis and/or proPO activation in M. sexta. To test this hypothesis, two deletion mutant proteins (IML-2Δ220-244 and IML-2Δ220-257), in which the extended loop of the CRD2 was partially or completely deleted, were expressed and purified. By comparing the characteristics of recombinant IML-2, IML-2Δ220-244 and IML-2Δ220-257, we found that deletion of the extended loop in CRD2 impaired the ability of IML-2 to bind microbial PAMPs and to stimulate proPO activation, indicating that the extended loop of IML-2 plays an important role in ligand binding and biological functions.  相似文献   

10.
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.  相似文献   

11.
Ure2, the protein determinant of the Saccharomyces cerevisiae prion [URE3], has a natively disordered N-terminal domain that is important for prion formation in vivo and amyloid formation in vitro; the globular C-domain has a glutathione transferase-like fold. In the present study, we swapped the position of the N- and C-terminal regions, with or without an intervening peptide linker, to create the Ure2 variants CLN-Ure2 and CN-Ure2 respectively. The native structural content and stability of the variants were the same as wild-type Ure2, as indicated by enzymatic activity, far-UV CD analysis and equilibrium denaturation. CLN-Ure2 was able to form amyloid-like fibrils, but with a significantly longer lag time than wild-type Ure2; and the two proteins were unable to cross-seed. Under the same conditions, CN-Ure2 showed limited ability to form fibrils, but this was improved after addition of 0.03?M guanidinium chloride. As for wild-type Ure2, allosteric enzyme activity was observed in fibrils of CLN-Ure2 and CN-Ure2, consistent with retention of the native-like dimeric structure of the C-domains within the fibrils. Proteolytically digested fibrils of CLN-Ure2 and CN-Ure2 showed the same residual fibril core morphology as wild-type Ure2. The results suggest that the position of the prion domain affects the ability of Ure2 to form fibrils primarily due to effects on its flexibility.  相似文献   

12.
Chu CC  Li HM 《Plant physiology》2012,158(4):1656-1665
Chloroplast 93-kD heat shock protein (Hsp93/ClpC), an Hsp100 family member, is suggested to have various functions in chloroplasts, including serving as the regulatory chaperone for the ClpP protease in the stroma and acting as a motor component of the protein translocon at the envelope. Indeed, although Hsp93 is a soluble stromal protein, a portion of it is associated with the inner envelope membrane. The mechanism and functional significance of this Hsp93 membrane association have not been determined. Here, we mapped the region important for Hsp93 membrane association by creating various deletion constructs and found that only the construct with the amino-terminal domain deleted, Hsp93-ΔN, had reduced membrane association. When transformed into Arabidopsis (Arabidopsis thaliana), most atHsp93V-ΔN proteins did not associate with membranes and atHsp93V-ΔΝ failed to complement the pale-green and protein import-defective phenotypes of an hsp93V knockout mutant. The residual atHsp93V-ΔN at the membranes had further reduced association with the central protein translocon component Tic110. However, the degradation of chloroplast glutamine synthetase, a potential substrate for the ClpP protease, was not affected in the hsp93V mutant or in the atHSP93V-ΔN transgenic plants. Hsp93-ΔN also had the same ATPase activity as that of full-length Hsp93. These data suggest that the association of Hsp93 with the inner envelope membrane through its amino-terminal domain is important for the functions of Hsp93 in vivo.  相似文献   

13.
Mdm2, a key negative regulator of the p53 tumor suppressor, is a RING-type E3 ubiquitin ligase. The Mdm2 RING domain can be biochemically fractionated into two discrete species, one of which exists as higher order oligomers that are visible by electron microscopy, whereas the other is a monomer. Both fractions are ATP binding and E3 ligase activity competent, although the oligomeric fraction exhibits lower dependence on the E2 component of ubiquitin polymerization reactions. The extreme C-terminal five amino acids of Mdm2 are essential for E3 ligase activity in vivo and in vitro, as well as for oligomeric assembly of the protein. A single residue (phenylalanine 490) in that sequence is critical for both properties. Interestingly, the C-terminus of the Mdm2 homologue, MdmX (itself inert as an E3 ligase), can fully substitute for the equivalent segment of Mdm2 and restore its E3 activity. We further show that the Mdm2 C-terminus is involved in intramolecular interactions and can set up a platform for direct protein-protein interactions with the E2.  相似文献   

14.
15.
Among the four cold shock domain proteins (CSDPs) identified in Arabidopsis thaliana, it has recently been shown that CSDP1 harboring seven CCHC-type zinc fingers, but not CSDP2 harboring two CCHC-type zinc fingers, function as a RNA chaperone during cold adaptation. However, the structural features relevant to this differing RNA chaperone activity between CSDP1 and CSDP2 remain largely unknown. To determine which structural features are necessary for the RNA chaperone activity of the CSDPs, the importance of the N-terminal cold shock domain (CSD) and the C-terminal zinc finger glycine-rich domains of CSDP1 and CSDP2 were assessed. The results of sequence motif-swapping and deletion experiments showed that, although the CSD itself harbored RNA chaperone activity, the number and length of the zinc finger glycine-rich domains of CSDPs were crucial to the full activity of the RNA chaperones. The C-terminal domain itself of CSDP1, harboring seven CCHC-type zinc fingers, also has RNA chaperone activity. The RNA chaperone activity and nuclei acid-binding property of the native and chimeric proteins were closely correlated with each other. Collectively, these results indicate that a specific modular arrangement of the CSD and the zinc finger domain determines both the RNA chaperone activity and nucleic acid-binding property of CSDPs; this, in turn, contributes to enhanced cold tolerance in plants as well as in bacteria.  相似文献   

16.
Human tissue-type plasminogen activator (t-PA) is cleared rapidly from the circulation by hepatic receptors, one of which recognizes a site in the epidermal growth factor-like domain of the molecule. To define this site more precisely, we have used oligonucleotide-mediated mutagenesis to introduce amino acid substitutions at specific positions located in turns that connect antiparallel beta-sheets in the epidermal growth factor-like domain. Mutated t-PA proteins with amino acid substitutions of the tyrosine residue at position 67 showed markedly lower rates of endocytosis and degradation by cultured cells of the rat hepatoma (H4) line that express a specific receptor for t-PA, and their half-life in the circulation of rats was extended significantly because of a reduction in the rate of the rapid alpha-phase of clearance. The enzymatic properties and fibrinolytic activity of these mutants in vitro were not significantly different from those of wild-type t-PA. We conclude that tyrosine 67 comprises a key determinant in the clearance of t-PA by a specific hepatic receptor.  相似文献   

17.
18.
Degradation of intracellular proteins via the ubiquitin- and ATP-dependent proteolytic pathway involves several steps. In the initial event, ubiquitin, an abundant 76-residue polypeptide is covalently linked to the protein substrate in an ATP-requiring reaction. Proteins marked by ubiquitin are selectively proteolyzed in a reaction that also requires ATP. Ubiquitin conjugation to proteins appears also to be involved in regulation of cell cycle and cell division, and probably in the regulation of gene expression at the level of chromatin structure. We have previously shown (Ciechanover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1341-1345) that transfer RNA is an essential component of the ubiquitin pathway. Ribonucleases strongly and specifically inhibited the degradation of 125I-labeled bovine serum albumin, while tRNA purified from reticulocyte extract could restore the proteolytic activity. Specifically, pure tRNAHis isolated by immunoprecipitation with human autoimmune serum could restore the proteolytic activity. Here we demonstrate that tRNA is required for conjugation of ubiquitin to some but not all proteolytic substrates of the ubiquitin mediated pathway. Conjugation of 125I-labeled ubiquitin to reduced carboxymethylated bovine serum albumin, alpha-lactalbumin, and soybean trypsin inhibitor was strongly and specifically inhibited by ribonucleases. Consequently, the ATP-dependent degradation of these substrates in the cell-free ubiquitin-dependent reticulocyte system was inhibited as well. Addition of tRNA to the ribonuclease inhibited system (following inhibition of the ribonuclease) restored both the conjugation activity and the ubiquitin- and ATP-dependent degradation of these substrates. Conjugation of ubiquitin to some endogenous reticulocyte proteins was also inhibited by ribonucleases and could be restored by the addition of tRNA. In striking contrast, the conjugation of radiolabeled ubiquitin to lysozyme, oxidized RNase A, alpha-casein, and beta-lactoglobulin was not affected by the ribonuclease treatment, and the degradation of these substrates was significantly accelerated by the ribonucleases. These findings indicate that there are at least two distinct ubiquitin conjugation systems. One requires tRNA, and the other is tRNA independent. These pathways, however, must share some common component(s) of the system, since the inhibition of one system accelerates the other. The possible function of tRNA in the selective conjugation reaction and the possible role of the two distinct ubiquitin marking mechanisms are discussed.  相似文献   

19.
Cells must regulate the abundance and activity of numerous nutrient transporters in different organelle membranes to achieve nutrient homeostasis. As the recycling center and major storage organelle, lysosomes are essential for maintaining nutrient homeostasis. However, very little is known about mechanisms that govern the regulation of its membrane proteins. In this study, we demonstrated that changes of Zn2+ levels trigger the downregulation of vacuolar Zn2+ transporters. Low Zn2+ levels cause the degradation of the influx transporter Cot1, whereas high Zn2+ levels trigger the degradation of the efflux channel Zrt3. The degradation process depends on the vacuole membrane recycling and degradation pathway. Unexpectedly, we identified a RING domain–containing E3 ligase Tul1 and its interacting proteins in the Dsc complex that are important for the ubiquitination of Cot1 and partial ubiquitination of Zrt3. Our study demonstrated that the Dsc complex can function at the vacuole to regulate the composition and lifetime of vacuolar membrane proteins.  相似文献   

20.
Our strategy to use saturation mutagenesis to produce an unbiased collection of major histocompatibility class I mutants has resulted in unpredicted mutant phenotypes. First, we have shown data supporting our earlier work of the Dp20(Y27N) mutant. Allorecognition is altered at the clonal level while no variation in lymphocytic choriomeningitis virus (LCMV)-restricted recognition is observed. The defect does not destroy the integrity of this class I protein on the basis of three observations: (i) LCMV self-restricted recognition is not impaired, (ii) beta 2 microglobulin still associates with Dp20(Y27N) at the cell surface, and (iii) this mutant can stimulate a primary MLR. Thus, we believe Dp20(Y27N) specifically affects allorecognition, perhaps by altering self peptide associations. The Dp14(A11V;E32Q) mutant appears to interact with T cell receptors (TCR) from a cloned cytotoxic T lymphocyte, but is altered in inducing a wild type signal into the responding cell. This is presumably due to decreased interaction at the cell surface between Dp14(A11V;E32Q) and wild type-specific TCR such that variations are detected in how a cell perceives extracellular signals. Analysis of additional mutants suggests that mutant Dp163(N66S) alters the binding site for monoclonal antibodies 7-16.10 and 135, while leaving unaltered the binding site for monoclonal antibodies 34-1.2 and 11-20.3. This maps the residue responsible for 7-16.10 and 135 binding to the region of Dp163(N66S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号