共查询到20条相似文献,搜索用时 0 毫秒
1.
Rolf Urbach Dagmar Volland Janina Seibert Gerhard M Technau 《Development (Cambridge, England)》2006,133(21):4315-4330
An initial step in the development of the Drosophila central nervous system is the delamination of a stereotype population of neural stem cells (neuroblasts, NBs) from the neuroectoderm. Expression of the columnar genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) and muscle segment homeobox (msh) subdivides the truncal neuroectoderm (primordium of the ventral nerve cord) into a ventral, intermediate and dorsal longitudinal domain, and has been shown to play a key role in the formation and/or specification of corresponding NBs. In the procephalic neuroectoderm (pNE, primordium of the brain), expression of columnar genes is highly complex and dynamic, and their functions during brain development are still unknown. We have investigated the role of these genes (with special emphasis on the Nkx2-type homeobox gene vnd) in early embryonic development of the brain. We show at the level of individually identified cells that vnd controls the formation of ventral brain NBs and is required, and to some extent sufficient, for the specification of ventral and intermediate pNE and deriving NBs. However, we uncovered significant differences in the expression of and regulatory interactions between vnd, ind and msh among brain segments, and in comparison to the ventral nerve cord. Whereas in the trunk Vnd negatively regulates ind, Vnd does not repress ind (but does repress msh) in the ventral pNE and NBs. Instead, in the deutocerebral region, Vnd is required for the expression of ind. We also show that, in the anterior brain (protocerebrum), normal production of early glial cells is independent from msh and vnd, in contrast to the posterior brain (deuto- and tritocerebrum) and to the ventral nerve cord. 相似文献
2.
3.
Marko Zalokar 《Developmental biology》1976,49(2):425-437
Permeabilized eggs of Drosophila melanogaster were incubated in tritiated uridine, valine, and phenylalanine. The uptake and incorporation into TCA-insoluble material were measured by scintillation counting. There was very little incorporation of uridine before the blastoderm stage. At the blastoderm stage, the egg took up 2.4 pmoles/hr of uridine and incorporated 0.13 pmoles into RNA (assuming no dilution of specific activity of the precursor). The uptake of amino acids varied with the age of the embryo; virgin eggs synthesized about as much protein as fertilized eggs. Autoradiography of eggs incubated in uridine showed a lack of RNA synthesis in nuclei until the start of the blastoderm formation. The small amount of uridine incorporation before this stage was due to mitochondria. Incorporation of amino acids was uniform in the cytoplasm until the blastoderm; there was no incorporation by yolk granules. Regional difference in labeling appeared during gastrulation. The pole cells did not form RNA during the blastoderm stage, formation started during gastrulation. Protein labeling of the pole cells, on the contrary, was very strong in the blastoderm and early gastrula. These results indicate that the expression of zygotic genome before the blastoderm stage is unlikely. 相似文献
4.
5.
Page DT 《Development (Cambridge, England)》2002,129(9):2121-2128
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this 'proto-brain'. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous. 相似文献
6.
7.
8.
9.
The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development
Verheyen EM Mirkovic I MacLean SJ Langmann C Andrews BC MacKinnon C 《Mechanisms of development》2001,101(1-2):119-132
Drosophila nemo was first identified as a gene required for tissue polarity during ommatidial development. We have extended the analysis of nemo and found that it participates in multiple developmental processes. It is required during wing development for wing shape and vein patterning. We observe genetic interactions between nemo and mutations in the Notch, Wingless, Frizzled and Decapentaplegic pathways. Our data support the findings from other organisms that Nemo proteins act as negative regulators of Wingless signaling. nemo mutations cause polarity defects in the adult wing and overexpression of nemo leads to abdominal polarity defects. The expression of nemo during embryogenesis is dynamic and dsRNA inhibition and ectopic expression studies indicate that nemo is essential during embryogenesis. 相似文献
10.
The Drosophila expanded (ex) gene encodes a protein thought to play a role in signaling at apical junctions of epithelial cells. Previous studies have characterized this gene as a tumor suppressor involved in regulating the growth of a subset of Drosophila imaginal discs (Boedigheimer, M., Laughon, A., 1993. expanded: a gene involved in the control of cell proliferation in imaginal discs, Development 118, 1291-1301); although ex negatively regulates cell proliferation in the developing wing, it appeared to have a conflicting role in the eye. In contrast, our analysis of the loss-of-function phenotype indicates that ex does, in fact, regulate growth in the eye. We also show that this gene plays a role in patterning of the eye, mainly at the level of planar polarity. Our studies further demonstrate that, contrary to what was expected based on loss-of-function data, the tissue reduction phenotypes resulting from Ex overexpression are attributable to the induction of apoptotic cell death. Taken together, our data suggest that Ex is a versatile molecule that plays a role in most of the processes that govern disc development. 相似文献
11.
Sutherland DJ Li M Liu XQ Stefancsik R Raftery LA 《Development (Cambridge, England)》2003,130(23):5705-5716
Genetic evidence suggests that the Drosophila ectoderm is patterned by a spatial gradient of bone morphogenetic protein (BMP). Here we compare patterns of two related cellular responses, both signal-dependent phosphorylation of the BMP-regulated R-SMAD, MAD, and signal-dependent changes in levels and sub-cellular distribution of the co-SMAD Medea. Our data demonstrate that nuclear accumulation of the co-SMAD Medea requires a BMP signal during blastoderm and gastrula stages. During this period, nuclear co-SMAD responses occur in three distinct patterns. At the end of blastoderm, a broad dorsal domain of weak SMAD response is detected. During early gastrulation, this domain narrows to a thin stripe of strong SMAD response at the dorsal midline. SMAD response levels continue to rise in the dorsal midline region during gastrulation, and flanking plateaus of weak responses are detected in dorsolateral cells. Thus, the thresholds for gene expression responses are implicit in the levels of SMAD responses during gastrulation. Both BMP ligands, DPP and Screw, are required for nuclear co-SMAD responses during these stages. The BMP antagonist Short gastrulation (SOG) is required to elevate peak responses at the dorsal midline as well as to depress responses in dorsolateral cells. The midline SMAD response gradient can form in embryos with reduced dpp gene dosage, but the peak level is reduced. These data support a model in which weak BMP activity during blastoderm defines the boundary between ventral neurogenic ectoderm and dorsal ectoderm. Subsequently, BMP activity creates a step gradient of SMAD responses that patterns the amnioserosa and dorsomedial ectoderm. 相似文献
12.
13.
14.
Recent studies have revealed asymmetries in the mouse zygote and preimplantation embryo, well before the establishment of anterior-posterior polarity after implantation. Whether these asymmetries are causally related to embryonic patterning or are coincidental outcomes of the topology of normal development remains uncertain. 相似文献
15.
16.
The Zic genes are the vertebrate homologues of the Drosophila pair rule gene odd-paired. It has been proposed that Zic genes play several roles during neural development including mediolateral segmentation of the neural plate, neural crest induction, and inhibition of neurogenesis. Initially during mouse neural development Zic2 is expressed throughout the neural plate while later on expression in the neurectoderm becomes restricted to the lateral region of the neural plate. A hypomorphic allele of Zic2 has demonstrated that in the mouse Zic2 is required for the timing of neurulation. We have isolated a new allele of Zic2 that behaves as a loss of function allele. Analysis of this mutant reveals two further functions for Zic2 during early neural development. Mutation of Zic2 results in a delay of neural crest production and a decrease in the number of neural crest cells that are produced. These defects are independent of mediolateral segmentation of the neurectoderm and of dorsal neurectoderm proliferation, both of which occur normally in the mutant embryos. Additionally Zic2 is required during hindbrain patterning for the normal development of rhombomeres 3 and 5. This work provides the first genetic evidence that the Zic genes are involved in neural crest production and the first demonstration that Zic2 functions during hindbrain patterning. 相似文献
17.
18.
19.
20.
Glial patterning during postembryonic development of central neuropiles in the brain of the honeybee
Glial cells are involved in several functions during the development of the nervous system. To understand potential glial
contributions to neuropile formation, we examined the cellular pattern of glia during the development of the mushroom body,
antennal lobe and central complex in the brain of the honeybee. Using an antibody against the glial-specific repo-protein
of Drosophila, the location of the glial somata was detected in the larval and pupal brain of the bee. In the early larva, a continuous
layer of glial cell bodies defines the boundaries of all growing neuropiles. Initially, the neuropiles develop in the absence
of any intrinsic glial somata. In a secondary process, glial cells migrate into defined locations in the neuropiles. The corresponding
increase in the number of neuropile-associated glial cells is most likely due to massive immigrations of glial cells from
the cell body rind using neuronal fibres as guidance cues. The combined data from the three brain regions suggest that glial
cells can prepattern the neuropilar boundaries.
Received: 3 November 1996 / Accepted: 7 February 1997 相似文献