首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor of apoptosis proteins (IAPs) regulate the activity of caspases in apoptosis. The human X chromosome-encoded IAP (XIAP) is one of the more potent members of the IAP family and it has been described as a central regulator of apoptosis. Thus, molecules that inhibit XIAP could offer therapeutic opportunities to treat unwanted apoptosis inhibition. In the present study we have applied the selective optimization of side activities (SOSA) approach to the discovery of XIAP inhibitors. In this sense, we have identified dequalinium hydrochloride (Dq) as an inhibitor of the XIAP/caspase-3 interaction both in vitro and in cellular assays.  相似文献   

2.
Some members of the inhibitor of apoptosis (IAP) family suppress apoptosis by neutralizing caspases. The current model suggests that all caspase-regulatory IAPs function as direct enzyme inhibitors, blocking effector caspases by binding to their catalytically active pockets. Here we show that IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Whereas XIAP binds directly to the active-site pockets of effector caspases, we find that regulation of effector caspases by Drosophila IAP1 (DIAP1) requires an evolutionarily conserved IAP-binding motif (IBM) at the neo-amino terminus of the large caspase subunit. Remarkably, unlike XIAP, DIAP1-sequestered effector caspases remain catalytically active, suggesting that DIAP1 does not function as a bona fide enzyme inhibitor. Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1. The importance of IBM-mediated regulation of effector-caspases in vivo is substantiated by the enhanced apoptotic potency of IBM-mutant versions of drICE, DCP-1 and caspase-7.  相似文献   

3.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

4.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

5.
Grim is a Drosophila inhibitor of apoptosis (IAP) antagonist that directly interferes with inhibition of caspases by IAPs. Expression of Grim, or removal of DIAP1, is sufficient to activate apoptosis in fly cells. Transient expression of Grim in mammalian cells induces apoptosis, arguing for the conservation of apoptotic pathways, but cytoplasmic expression of the mammalian IAP antagonist Diablo/smac does not. To understand why, we compared Grim and Diablo. Although they have the same IAP binding specificity, only Grim promoted XIAP ubiquitination and degradation. Grim also synergized with XIAP to promote an increase in total cellular ubiquitination, whereas Diablo antagonized this activity. Surprisingly, Grim-induced ubiquitination of XIAP did not require the IAP RING finger. Analysis of a Grim mutant that promoted XIAP degradation, but was not cytotoxic, suggests that Grim killing in transient assays is due to a combination of IAP depletion, blocking of IAP-mediated caspase inhibition, and at least one other unidentified function. Unlike transiently transfected cells, inducible mammalian cell lines can sustain continuous expression of Grim and selective degradation of XIAP without undergoing apoptosis, demonstrating that down-regulation and antagonism of IAPs is not sufficient to cause apoptosis of mammalian cells.  相似文献   

6.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   

7.
The antiapoptotic properties of the inhibitor of apoptosis (IAP) family of proteins have been linked to caspase inhibition. We have previously described an alternative mechanism of XIAP inhibition of apoptosis that depends on the selective activation of JNK1. Here we report that two other members of the IAP family, NAIP and ML-IAP, both activate JNK1. Expression of catalytically inactive JNK1 blocks NAIP and ML-IAP protection against ICE- and TNF-alpha-induced apoptosis, indicating that JNK1 activation is necessary for the antiapoptotic effect of these proteins. The MAP3 kinase, TAK1, appears to be an essential component of this antiapoptotic pathway since IAP-mediated activation of JNK1, as well as protection against TNF-alpha- and ICE-induced apoptosis, is inhibited when catalytically inactive TAK1 is expressed. In addition, XIAP, NAIP, and JNK1 bind to TAK1. Importantly, expression of catalytically inactive TAK1 did not affect XIAP inhibition of caspase activity. These data suggest that XIAP's antiapoptotic activity is achieved by two separate mechanisms: one requiring TAK1-dependent JNK1 activation and the second involving caspase inhibition.  相似文献   

8.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

9.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

10.
Smac/DIABLO is a mitochondrial protein that is released along with cytochrome c during apoptosis and promotes cytochrome c-dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs). We provide evidence that Smac/DIABLO functions at the levels of both the Apaf-1-caspase-9 apoptosome and effector caspases. The N terminus of Smac/DIABLO is absolutely required for its ability to interact with the baculovirus IAP repeat (BIR3) of XIAP and to promote cytochrome c-dependent caspase activation. However, it is less critical for its ability to interact with BIR1/BIR2 of XIAP and to promote the activity of the effector caspases. Consistent with the ability of Smac/DIABLO to function at the level of the effector caspases, expression of a cytosolic Smac/DIABLO in Type II cells allowed TRAIL to bypass Bcl-xL inhibition of death receptor-induced apoptosis. Combined, these data suggest that Smac/DIABLO plays a critical role in neutralizing IAP inhibition of the effector caspases in the death receptor pathway of Type II cells.  相似文献   

11.
XIAP is a mammalian inhibitor of apoptosis protein (IAP). To determine residues within the second baculoviral IAP repeat (BIR2) required for inhibition of caspase 3, we screened a library of BIR2 mutants for loss of the ability to inhibit caspase 3 toxicity in the yeast Schizosaccharomyces pombe. Four of the mutations, not predicted to affect the structure of the BIR fold, clustered together on the N-terminal region that flanks BIR2, suggesting that this is a site of interaction with caspase 3. Introduction of these mutations into full-length XIAP reduced caspase 3 inhibitory activity up to 500-fold, but did not affect its ability to inhibit caspase 9 or interact with the IAP antagonist DIABLO. Furthermore, these mutants retained full ability to inhibit apoptosis in transfected cells, demonstrating that although XIAP is able to inhibit caspase 3, this activity is dispensable for inhibition of apoptosis by XIAP in vivo.  相似文献   

12.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

13.
X-linked inhibitor of apoptosis protein (XIAP), a leading member of the family of inhibitor of apoptosis (IAP) proteins, is considered as the most potent and versatile inhibitor of caspases and apoptosis. It has been reported that XIAP is frequently overexpressed in cancer and its expression level is implicated in contributing to tumorigenesis, disease progression, chemoresistance and poor patient-survival. Therefore, XIAP is one of the leading targets in drug development for cancer therapy. Recently, based on bioinformatics study, a previously unrecognized but evolutionarily conserved ubiquitin-associated (UBA) domain in IAPs was identified. The UBA domain is found to be essential for the oncogenic potential of IAP, to maintain endothelial cell survival and to protect cells from TNF-α-induced apoptosis. Moreover, the UBA domain is required for XIAP to activate NF-κB. In the present study, we report the near complete resonance assignments of the UBA domain-containing region of human XIAP protein. Secondary structure prediction based on chemical shift index (CSI) analysis reveals that the protein is predominately α-helical, which is consistent with the structures of known UBA proteins.  相似文献   

14.
During apoptosis, Smac (second mitochondria-derived activator of caspases)/DIABLO, an IAP (inhibitor of apoptosis protein)-binding protein, is released from mitochondria and potentiates apoptosis by relieving IAP inhibition of caspases. We demonstrate that exposure of MCF-7 cells to the death-inducing ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), results in rapid Smac release from mitochondria, which occurs before or in parallel with loss of cytochrome c. Smac release is inhibited by Bcl-2/Bcl-xL or by a pan-caspase inhibitor demonstrating that this event is caspase-dependent and modulated by Bcl-2 family members. Following release, Smac is rapidly degraded by the proteasome, an effect suppressed by co-treatment with a proteasome inhibitor. As the RING finger domain of XIAP possesses ubiquitin-protein ligase activity and XIAP binds tightly to mature Smac, an in vitro ubiquitination assay was performed which revealed that XIAP functions as a ubiquitin-protein ligase (E3) in the ubiquitination of Smac. Both the association of XIAP with Smac and the RING finger domain of XIAP are essential for ubiquitination, suggesting that the ubiquitin-protein ligase activity of XIAP may promote the rapid degradation of mitochondrial-released Smac. Thus, in addition to its well characterized role in inhibiting caspase activity, XIAP may also protect cells from inadvertent mitochondrial damage by targeting pro-apoptotic molecules for proteasomal degradation.  相似文献   

15.
Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.  相似文献   

16.
Apoptosis, a programmed cell death, plays a key role in the regulation of tissue homeostasis. However, impairment of its regulation may promote formation and progression of malignancy. An important part of the apoptotic machinery are the inhibitor of apoptosis protein (IAP) family, regulating caspase activity, cell division or cell survival pathways through binding to their baculovirus AIP repeat (BIR) domains and/or by their ubiquitin-ligase RING zinc finger (RZF) activity. The following IAPs have been described so far: NAIP (neuronal apoptosis inhibitory protein; BIRC1), cIAP1 and cIAP2 (cellular inhibitor of apoptosis 1 and 2; BIRC2 and BIRC3, respectively), XIAP (X-chromosome binding IAP; BIRC4), survivin (BIRC5), BRUCE (Apollon; BIRC6), livin (BIRC7) and Ts-IAP (testis-specific IAP; BIRC8). Several studies suggested a potential contribution of IAPs to oncogenesis and resistance to anti-tumor treatment. Increased IAP expression was found in variety of human cancers, including hematological malignancies, such as leukemias and B-cell lymphomas. A correlation between the progression of those diseases and high levels of survivin or XIAP has been reported. Overexpression of XIAP in acute myeloid leukemia or survivin in acute lymphoblastic leukemia and diffuse large B-cell lymphoma have been indicated as an unfavorable prognostic factors. Elevated cellular levels of cIAP1, cIAP2, XIAP and survivin correlated with a progressive course of chronic lymphocytic leukemia. Thus, targeting IAPs with small-molecule inhibitors by their antisense approaches or natural IAP antagonist mimetics, may be an attractive strategy of anti-cancer treatment. Such agents can either directly induce apoptosis of tumor cells or sensitize them to other cytotoxic agents, hence overcoming drug-resistance. This review demonstrates the current knowledge on IAP molecular biology, as well as the mechanisms of action and the development of IAP-targeting agents for treatment of hematological malignancies.  相似文献   

17.
The inhibitors of apoptosis (IAPs) suppress apoptosis through the inhibition of the caspase cascade and thus are key proteins in the control of cell death. Here we have isolated the protein XIAP-associated factor 1 (XAF1) on the basis of its ability to bind XIAP, a member of the IAP family. XIAP suppresses caspase activation and cell death in vitro, and XAF1 antagonizes these XIAP activities. Expression of XAF1 triggers a redistribution of XIAP from the cytosol to the nucleus. XAF1 is ubiquitously expressed in normal tissues, but is present at low or undetectable levels in many different cancer cell lines. Loss of control over apoptotic signalling is now recognized as a critical event in the development of cancer. Our results indicate that XAF1 may be important in mediating the apoptosis resistance of cancer cells.  相似文献   

18.
Inhibitor of apoptosis proteins (IAPs) can block apoptosis through binding to active caspases and antagonizing their function. IAP function can be neutralized by Smac/Diablo, an IAP-binding protein that is released from mitochondria during apoptosis. In addition to their ability to interact with caspases, certain IAPs also display ubiquitin-protein isopeptide ligase activity because of the presence of a RING domain. However, it is not known whether the ubiquitin-protein isopeptide ligase activities of human IAPs contribute to their apoptosis inhibitory activity or whether this IAP property can be modulated through association with Smac/Diablo. Here we demonstrate that the ubiquitin ligase activities of XIAP, and to a lesser extent c-IAP-1 and c-IAP2, are potently repressed through binding to Smac/Diablo. We also show that mutation of the XIAP RING domain rendered this IAP a less effective inhibitor of apoptosis, suggesting that the ubiquitin ligase activity of XIAP contributes to its anti-apoptotic function. These data suggest that Smac/Diablo potentiates apoptosis by simultaneously antagonizing caspase-IAP interactions and repressing IAP ubiquitin ligase activities.  相似文献   

19.
During apoptosis, the initiator caspase 9 is activated at the apoptosome after which it activates the executioner caspases 3 and 7 by proteolysis. During this process, caspase 9 is cleaved by caspase 3 at Asp(330), and it is often inferred that this proteolytic event represents a feedback amplification loop to accelerate apoptosis. However, there is substantial evidence that proteolysis per se does not activate caspase 9, so an alternative mechanism for amplification must be considered. Cleavage at Asp(330) removes a short peptide motif that allows caspase 9 to interact with IAPs (inhibitors of apoptotic proteases), and this event may control the amplification process. We show that, under physiologically relevant conditions, caspase 3, but not caspase 7, can cleave caspase 9, and this does not result in the activation of caspase 9. An IAP antagonist disrupts the inhibitory interaction between XIAP (X-linked IAP) and caspase 9, thereby enhancing activity. We demonstrate that the N-terminal peptide of caspase 9 exposed upon cleavage at Asp330 cannot bind XIAP, whereas the peptide generated by autolytic cleavage of caspase 9 at Asp315 binds XIAP with substantial affinity. Consistent with this, we found that XIAP antagonists were only capable of promoting the activity of caspase 9 when it was cleaved at Asp315, suggesting that only this form is regulated by XIAP. Our results demonstrate that cleavage by caspase 3 does not activate caspase 9, but enhances apoptosis by alleviating XIAP inhibition of the apical caspase.  相似文献   

20.
Several human inhibitor of apoptosis (IAP) family proteins function by directly inhibiting specific caspases in a mechanism that does not require IAP cleavage. In this study, however, we demonstrate that endogenous XIAP is cleaved into two fragments during apoptosis induced by the tumor necrosis factor family member Fas (CD95). The two fragments produced comprise the baculoviral inhibitory repeat (BIR) 1 and 2 domains (BIR1-2) and the BIR3 and RING (BIR3-Ring) domains of XIAP. Overexpression of the BIR1-2 fragment inhibits Fas-induced apoptosis, albeit at significantly reduced efficiency compared with full-length XIAP. In contrast, overexpression of the BIR3-Ring fragment results in a slight enhancement of Fas-directed apoptosis. Thus, cleavage of XIAP may be one mechanism by which cell death programs circumvent the anti-apoptotic barrier posed by XIAP. Interestingly, ectopic expression of the BIR3-Ring fragment resulted in nearly complete protection from Bax-induced apoptosis. Use of purified recombinant proteins revealed that BIR3-Ring is a specific inhibitor of caspase-9 whereas BIR1-2 is specific for caspases 3 and 7. Therefore XIAP possesses two different caspase inhibitory activities which can be attributed to distinct domains within XIAP. These data may provide an explanation for why IAPs have evolved with multiple BIR domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号