首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of the cytochrome binding site on the reaction center of Rhodopseudomonas sphaeroides was studied by two different approaches. In one, cross-linking agents, principally dithiobis(propionimidate) and dimethyl suberimidate, were used to link cytochrome c and cytochrome c2 to reaction centers; in the other, the inhibition of electron transfer by antibodies against the subunits was investigated. Cytochrome c (horse) cross-linked to the L and M subunits, whereas cytochrome c2 (R. sphaeroides) cross-linked only to the L subunit. The cross-linked reaction center-cytochrome complexes were isolated by affinity chromatography. The rate of electron transfer in the cross-linked cytochrome c2 complex was the same as that in the un-cross-linked complex. However, when cytochrome c was used, the rate in the cross-linked complex was about 15 times slower than that in the un-cross-linked complex. Fab fragments of antibodies specific against the L and M subunits blocked electron transfer from both cytochrome c (horse) and cytochrome c2 (R. sphaeroides). Antibodies specific for the H subunit did not block either reaction. We conclude that the cytochrome binding site on the reaction center is close (approximately 10 A) to both the L and M subunits, possibly in a cleft between them.  相似文献   

2.
The organization of proteins in the chromatophore membrane, particularly of the reaction center and the light-harvesting polypeptide, was examined by the use of a hydrophobic and a hydrophilic cross-linking reagent, namely DSP (dithiobis-succinimidyl propionate) and glutaraldehyde. The linkage of proteins was studied by SDS polyacrylamide pore gradient electrophoresis. DSP was shown to link proteins within the core of the membrane. The subunit H of the reaction center is linked with DSP at a low concentration, either with itself or with other membrane proteins but not to the subunits M and L. In isolated reaction centers the subunits H are exclusively linked with each other. With increasing concentrations of DSP the bands of the subunits M, L, and the light-harvesting polypeptide disappear simultaneously from the gel, suggesting that these proteins are linked together. This hypothesis is supported by the finding that reaction centers isolated from chromatophores treated with DSP retain an appreciable amount of light-harvesting polypeptide. With increasing concentrations of the hydrophilic cross-linking reagent glutaraldehyde, the bands of all the three subunits of the reaction center, H, M, and L, progressively disappear from the gel, suggesting that they are linked together. The light-harvesting polypeptide remains free when this reagent is used.  相似文献   

3.
Reaction centers were isolated with the detergent lauryl dimethyl amine oxide from chromatophore membranes of Rhodospirillum rubrum. The subunit composition of these reaction centers is similar to the one obtained from Rhodopseudomonas spheroides: three subunits with the molecular weights of 21 000, 24 000 and 29 000. Reaction centers prepared from chromatophores labeled with 131I were heavely labeled in their large subunit (H). The smaller subunits (L and M) contained only little label. Sonication during labeling yielded a slightly higher incorporation of 131I in subunit H compared to the smaller ones. It is concluded that the H protein is largely exposed at the cytoplasmic side of the membrane but might also be accessible for iodination on the inside of the membrane while the L and M proteins are almost completely embedded in the membrane. Iodination of spheroplasts results in only a slight binding of 131I to chromatophores and reaction centers.  相似文献   

4.
The subunit arrangement of the reaction center complex (RC) of Rhodopseudomonas sphaeroides was studied by chemical modification with four different cross-linking reagents using purified RC in lauryldimethylamine oxide, RC incorporated into liposomes, and intact chromatophore membranes, from which RCs are isolated. The RC of R. sphaeroides is composed of three polypeptide subunits, H, M, and L, apparent molecular mass as determined in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 28,000, 24,000, and 21,000, respectively. The intra-complex products produced, were found to contain the polypeptides H-M-L, H-M, H-L, and M-L linked together. In addition, the cross-linking of cytochrome c to solubilized and membrane-bound RCs was observed with all four reagents. The products were found to be only a cytochrome c linked to either the M or L polypeptide. These results indicate that a portion of the L and M subunits of the RC must be exposed in situ on the periplasmic surface of the membrane near a binding site for cytochrome c on the RC, and all three subunits must be in close proximity to one another.  相似文献   

5.
The exposure of the three polypeptide subunits H, M, and L of the photochemical reaction center (RC) on both surfaces of the membrane of Rhodopseudomonas capsulata was studied by partial proteolysis with proteinase K and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of of degradation products. The possible association of RC subunits with bacteriochlorophyll a and bacteriopheophytin was investigated by spectroscopical measurements. Chromatophores (inside-out oriented) and spheroplasts (right-side-out oriented), as well as purified, detergent-solubilized RCs and RCs reconstituted into phosphatidyl choline liposomes, were used. Subunit H of the RC was degraded to fragments with apparent MrS of 15,000 and 12,500, which were possibly derived from cleavage of a loop exposed on the cytoplasmic surface. Polypeptide M was digested at a comparable rate. The apparent Mr of M decreased by roughly 4,000 upon proteolytic cleavage. Subunit L was relatively insensitive to protease attack, except that a small peptide was clipped off. The primary donor P870 was also found to be only slightly affected proteinase K. All three RC subunits appear to be exposed on the chromatophore surface.  相似文献   

6.
Tehrani A  Prince RC  Beatty JT 《Biochemistry》2003,42(30):8919-8928
Purple bacterial photosynthetic reaction center (RC) H proteins comprise three cellular domains: an 11 amino acid N-terminal sequence on the periplasmic side of the inner membrane; a single transmembrane alpha-helix; and a large C-terminal, globular cytoplasmic domain. We studied the roles of these domains in Rhodobacter sphaeroides RC function and assembly, using a mutagenesis approach that included domain swapping with Blastochloris viridis RC H segments and a periplasmic domain deletion. All mutations that affected photosynthesis reduced the amount of the RC complex. The RC H periplasmic domain is shown to be involved in the accumulation of the RC H protein in the cell membrane, while the transmembrane domain has an additional role in RC complex assembly, perhaps through interactions with RC M. The RC H cytoplasmic domain also functions in RC complex assembly. There is a correlation between the amounts of membrane-associated RC H and RC L, whereas RC M is found in the cell membrane independently of RC H and RC L. Furthermore, substantial amounts of RC M and RC L are found in the soluble fraction of cells only when RC H is present in the membrane. We suggest that RC M provides a nucleus for RC complex assembly, and that a RC H/M/L assemblage results in a cytoplasmic pool of soluble RC M and RC L proteins to provide precursors for maximal production of the RC complex.  相似文献   

7.
M R Sutton  D Rosen  G Feher  L A Steiner 《Biochemistry》1982,21(16):3842-3849
We have determined the sequence of the 25-28 amino-terminal residues of the three subunits, L, M, and H, of the membrane-bound reaction center protein of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. The sequences are as follows: L, H2N-Ala-Leu-Leu-Ser-Phe-Glu-Arg-Lys-Tyr-Arg- Val-Pro-Gly-Gly-Thr-Leu-Val-Gly-Gly-Asn-Leu-Phe-Asp-Phe-(His)-Val-; M, H2N-Ala-Glu-Tyr-Gln-Asn-Ile-Phe-Ser-Gln-Val-Gln-Val-Arg-Gly-Pro-Ala-Asp-Leu-Gly-Met-Thr-Glu-Asp-Val-Asn-Leu-Ala-Asn-; H, H2N-Met-Val-Gly-Val-Thr-Ala-Phe-Gly-Asn-Phe-Asp-Leu-Ala-Ser-Leu-Ala-Ile-Tyr-Ser-Phe-Trp-Ile-Phe-Leu-Ala-X-Leu-Ile-. The H sequence, especially after the aspartyl residue at position 11, is rich in hydrophobic residues, consistent with the possibility that this section of the polypeptide chain is located within the membrane. The L sequence is hydrophilic near the amino terminus and then becomes moderately hydrophobic. The M sequence is of average polarity.  相似文献   

8.
Membrane proteins have a significantly higher Trp content than do soluble proteins. This is especially true for the M and L subunits of the photosynthetic reaction center from purple bacteria. The Trp residues are not uniformly distributed through the membrane but are concentrated at the periplasmic side of the complex. In addition, Trp residues are not randomly aligned. Within the protein subunits, many form hydrogen bonds with carbonyl oxygens of the main chain, thereby stabilizing the protein. On the surface of the molecule, they are correctly positioned to form hydrogen bonds with the lipid head groups while their hydrophobic rings are immersed in the lipid part of the bilayer. These observations suggest that Trp residues are involved in the translocation of protein through the membrane and that following translocation, Trp residues serve as anchors on the periplasmic side of the membrane.  相似文献   

9.
Previous work (Nicholson, A. W., Hall, C. C., Strycharz, W. A., and Cooperman, B. S. (1982) Biochemistry 21, 3797-3808) showed that [3H]p-azidopuromycin photoaffinity labeled 70 S Escherichia coli ribosomes and that photoincorporation into 50 S subunit proteins was in the order L23 greater than L18/22 greater than L15. In the present work we report on immunoelectron microscopic studies of the complexes formed by p-azidopuromycin-modified 50 S subunits with antibodies to the N6,N6-dimethyladenosine moiety of the antibiotic. The p-azidopuromycin-modified 50 S subunits appear to be identical to unmodified control subunits in electron micrographs. Complexes of modified subunits with antibodies to the N6,N6-dimethyladenosine moiety of p-azidopuromycin were visualized in micrographs. Individual subunits with a single bound antibody (monomeric complexes) and pairs of subunits cross-linked by a single antibody (dimeric complexes) were separately evaluated and showed similar results. Two regions of p-azidopuromycin photoincorporation were identified. The primary site, seen in about 75% of the complexes, is between the central protuberance and small projection, on the side away from the L7/L12 arm, in a region thought to contain the peptidyltransferase center. The secondary site, of unknown significance, is at the base of the subunit maximally distant from the arm. These placements are essentially identical to those we observed in analyses of puromycin photoincorporation (Olson, H. M., Grant, P. G., Cooperman, B. S., and Glitz, D. G. (1982) J. Biol. Chem. 257, 2649-2656) and quantitatively similar to evaluations of monomeric puromycin-50 S subunit complexes. The data support the placement of proteins L23, L18/22, and L15 at or near the peptidyltransferase center at the primary site and suggest, in addition, that the secondary site includes a genuine area of puromycin affinity.  相似文献   

10.
Chromatophores of the photosynthetic bacterium Rhodospirillum rubrum and isolated reaction centers were labeled with the lipophilic membrane marker 5-[125I]iodonaphthyl-1-azide. The two smaller reaction center proteins L and M bind more label than the larger subunit H, a fact supporting the proposed localisation of the 3 subunits obtained with hydrophilic labels. Besides these integral proteins the lipids, among them mainly the pigments and the quinones, are highly labeled suggesting a hydrophobic environment around these molecules and a preferred reactivity to iodonaphthylazide. Such a hydrophobic environment may be of great importance for the function of the photosynthetic reaction centers especially for the charge separation and the primary reactions in electron transport.  相似文献   

11.
Primary structure of the reaction center from Rhodopseudomonas sphaeroides   总被引:17,自引:0,他引:17  
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins.  相似文献   

12.
The molecular organization of photochemical reaction (PR) complex in chromatophores from Rhodospirillum rubrum was studied by a combination of proteolytic analysis with proteinase K followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunochemical analysis with rabbit polyclonal antibodies against its five subunits (H, M, L, alpha, and beta). The preparations used for comparison were reaction center complex (RC) (composed of H, M, and L), PR complex, and chromatophores (closed membranous vesicles of polar lipid bilayer having PR complex buried in the membrane). 1. RC was bound with anti-H, anti-M, and anti-L antibodies, whereas PR complex and chromatophores were bound with anti-H and anti-beta antibodies, but not with the other antibodies. 2. With PR complex, H (Mr 31,000 (31K)) was rapidly degraded into two peptides with Mr of 16K and 14.5K (abbreviated as 16K and 14.5K, respectively), M (27K) into 25.5K, and beta (11K) into 10K. Significantly later, the 25.5K of M was degraded into 24K, L (23K) into 19K, and alpha (12K) into 11K. With chromatophores, H and beta were degraded in a manner similar to that with PR complex, whereas M, L, and alpha were not degraded at all. With RC, H, M, and L were rapidly degraded. 3. With RC, the activity for photooxidation of P870 (photochemical activity) was hardly affected till H, M, and L had been degraded into less than 10K, 24K, and 19K, respectively. With PR complex, the absorbance spectrum due to the bacteriochlorophylls of light-harvesting complex-1 composed of alpha and beta (LH1-Bchl) changed in parallel to the degradation of alpha or 10K (a part of beta). 4. Together with the previous results (Ueda et al. (1985) J. Biochem. 98, 1487-1498), the present findings suggest that: 1) RC is directly surrounded by 12 alpha and further by 12 beta; 2) H and beta are mostly and partially exposed, respectively, on the outer surface of the membranous vesicle; 3) a small part of M is exposed on the inner surface of the membranous vesicle.  相似文献   

13.
The electrogenic activity of Rhodospirillum rubrum P870 reaction center complexes devoid of the heavy (H) subunit and retaining the light (L) and medium (M) subunits, was studied. The proteoliposomes containing such reaction center complexes were formed by a self-assembly procedure, using soya bean phospholipids. In the presence of Ca2+ the reaction center proteoliposomes were incorporated into a phospholipid-impregnated Teflon filter separating two solutions of identical composition. After addition of N,N,N',N'-tetra-methyl-p-phenylenediamine (or cytochrome c) and qinone (menadione), illumination caused generation of an electric potential difference between the two filter-separated compartments, the proteoliposome-free compartment being negatively charged. The illuminated proteoliposomes took up penetrating tetraphenylphosphonium cations and, in a lesser degree, tetraphenylborate anions. The data obtained suggest that the reaction center complexes containing only L- and M-subunits possess the electrogenic activity. The H-subunit is not directly involved in membrane potential generation.  相似文献   

14.
B P Dwyer 《Biochemistry》1988,27(15):5586-5592
Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the alpha and beta subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na[3H]BH4. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, alpha and beta polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na[3H]BH4 in the presence of 8 M urea. The labeled alpha and beta polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the alpha and beta subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2', 4'-dinitrophenyl)-3-amino-propionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane.  相似文献   

15.
A novel procedure has been developed to specifically label the cytoplasmic domains of transmembrane proteins with the aldehyde pyridoxal 5-phosphate (PLP). Torpedo californica acetylcholine receptor (AcChR) vesicles were loaded with [3H]pyridoxine 5-phosphate ([3H]PNP) and pyridoxine-5-phosphate oxidase, followed by intravesicular enzymatic oxidation of [3H]PNP at 37 degrees C in the presence of externally added cytochrome c as a scavenger of possible leaking PLP product. The resulting Schiff's bases between PLP and AcChR amino groups were reduced with NaCNBH3, and the pyridoxylated proteins were analyzed by fluorography. The four receptor subunits were labeled whether the reaction was carried out on the internal surface or separately designed to mark the external one. On the other hand, the relative pyridoxylation of the subunits differed in both cases, reflecting differences in accessible lysyl residues in each side of the membrane. Proteinase K treatment of labeled AcChR vesicles generated a peptide of 13 kDa that could be detected with anti-PLP antibodies only when the pyridoxylation was carried out on the internal surface of the vesicles. Even though there are no large differences in the total lysine content among the subunits and there are two copies of the alpha-subunit, internal surface labeling by PLP was greatest for the highest molecular weight (delta) subunit, reinforcing the concept that the four receptor subunits are transmembranous and may protrude into the cytoplasmic face in a fashion [Strader, C. D., & Raftery, M. A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5807-5811] that is proportional to their subunit molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The internalization of the insulin receptor in the isolated rat adipose cell and the spatial orientation of the alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor in the plasma membrane have been examined. The receptor subunits were labeled by lactoperoxidase/Na125I iodination, a technique which side-specifically labels membrane proteins in intact cells and impermeable membrane vesicles. Internalization was induced by incubating cells for 30 min at 37 degrees C in the presence of saturating insulin. Plasma, high density microsomal (endoplasmic reticulum-enriched), and low density microsomal (Golgi-enriched) membrane fractions were prepared by differential ultracentrifugation. Receptor subunit iodination was analyzed by immunoprecipitation with anti-receptor antibodies, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and autoradiography. When intact cells were surface-labeled and incubated in the absence of insulin, the alpha and beta receptor subunits were clearly observed in the plasma membrane fraction and their quantities in the microsomal membrane fractions paralleled plasma membrane contamination. Following receptor internalization, however, both subunits were decreased in the plasma membrane fraction by 20-30% and concomitantly and stoichiometrically increased in the high and low density microsomal membrane fractions, without alterations in either their apparent molecular size or proportion. In contrast, when the isolated particulate membrane fractions were directly iodinated, both subunits were labeled in the plasma membrane fraction whereas only the beta subunit was prominently labeled in the two microsomal membrane fractions. Iodination of the subcellular fractions following their solubilization in Triton X-100 again clearly labeled both subunits in all three membrane fractions in identical proportions. These results suggest that 1) insulin receptor internalization comprises the translocation of both major receptor subunits from the plasma membrane into at least two different intracellular membrane compartments associated, respectively, with the endoplasmic reticulum and Golgi-enriched membrane fractions, 2) this translocation occurs without receptor loss or alterations in receptor subunit structure, and 3) the alpha receptor subunit is primarily, if not exclusively, exposed on the extracellular surface of the plasma membrane while the beta receptor subunit traverses the membrane, and this vectorial disposition is inverted during internalization.  相似文献   

18.
A new precursor of a lipophilic photolabel, 2-[8-14C]naphthyl 2-diazo-3,3,3-trifluoropropionate (NADIT) has been synthesized. The suitability of the reagent for labeling the hydrophobic core of membranes is demonstrated by studying its reactivity in chromatophores of Rhodospirillum rubrum G-9+. The label binds preferentially to the phospholipids and intrinsic membrane proteins. In isolated reaction centers treated with NADIT the hydrophobic subunits M and L are more labeled than the H subunit. The high reactivity, dark stability and ease of synthesis favors this very lipophilic reagent to identify the intrinsic hydrophobic sections of membrane proteins.  相似文献   

19.
The amino-terminal sequences have been determined by Edman degradation for the reaction center polypeptides from a carotenoidless mutant of Rhodopseudomonas capsulata. Individual polypeptides were isolated by preparative electrophoresis and electroelution. By comparison with the sequences deduced from the DNA (Youvan, D.C., Alberti, M., Begush, H., Bylina, E.J. and Hearst, J.E. (1984) Proc. Natl. Acad. Sci. USA 81, 189–192) we conclude that the M and L subunits are processed so as to remove the amino-terminal methionine, whereas the H subunit is not processed at the amino-terminus after translation. None of the subunits is synthesized with a significant amino-terminal extension peptide.  相似文献   

20.
Botulinum neurotoxin (NT) has two distinct structural regions called L and H chains (approximately 50 and approximately 100 kDa, respectively). Although the H chain is responsible for binding of the NT to neuronal cells, it is not known which of the subunits is internalized and therefore responsible for causing the blockage of acetylcholine release in susceptible neuronal cells. In this report we describe for the first time the preparation of type A NT which is selectively radiolabeled at either the L or the H chain subunit. Such NT preparations will be useful as tools for determining the distribution of L and H chains in poisoned neuronal cells and the role that each subunit plays in inducing toxicity. The L and H chains of the NT (approximately 150 kDa) were separated, purified, and then individually radiolabeled by reductive methylation of the lysine residues using [3H]- or [14C]formaldehyde. The labeled L and H chains were reconjugated with the complementary unlabeled L and H chains. Formation of -S-S- and noncovalent bonds between the L and H chains regenerated the approximately 150 kDa NT. Autoradiographs of sodium dodecyl sulfate polyacrylamide gels confirmed that each reconstituted NT preparation was labeled at only one subunit chain. NT selectively labeled at either the L or the H chain had specific radioactivities of ca. 25-30 and 45-55 microCi/mumol, respectively, and toxicity (mouse LD50/mg protein) values of 2.2 +/- 1.1 X 10(7) and 3.0 +/- 1.0 X 10(7), respectively. A linear increase in the specific radioactivity of L and H chain subunits was observed with increasing concentrations of 3H- or 14C-labeled formaldehyde in the reaction mixture and with increasing concentrations of L or H chain in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号