首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary Myogenic cells of the L6 line proliferate and fuse in culture to form myotubes that actively synthesize muscle-specific proteins such as myosin. We show that the expression of the differentiated phenotype can be influenced by the electrical charges of the substratum on which the cells were grown. Negatively charged surfaces did not influence the developmental program of the cells although positively charged ones interfered with myogenesis. The interaction operates primarily by interfering with the mitotic cycle, which is slowed down, with fusion which is blocked, and with myosin synthesis, which is reduced. Our results show that growth of the cells on positively charged surfaces prevents the switching of a large fraction of the population from a proliferative state to a differentiating program. We postulate that this interference might operate through the slowdown in DNA replication. The cell culture method described represents a good model for studying the different steps involved in the differentiation of L6 cells. This work was supported by the American Muscular Dystrophy Association.  相似文献   

2.
Attempts were made to identify positively charged groups at the surfaces of Ehrlich ascites tumour (EAT) cells, and particles of polystyrene polymer which had adsorbed proteins after incubation in serum-containing culture medium. The cells and particles were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) or 2,3-dimethylmaleic anhydride (DMA), which react with amino and other cationic groups. The increases in cell and particle anodic electrophoretic mobility were consistent with approx. 5% of the total surface charge of each, being due to positively charged groups. The effects of DMA or TNBS treatment of the cells and/or polystyrene surfaces, on the rates of cell adhesion to these surfaces were then determined. The significantly slower rates of adhesion after some modes of treatment suggest that positively charged groups at the surfaces of EAT cells play a part in their initial contact with and adhesion to, protein-coated plastic surfaces. However, quantitatively the role of cationic groups is a minor one in this part of the adhesion process.  相似文献   

3.
Human mesenchymal stem cells (hMSCs) are colony‐forming unit fibroblasts (CFU‐F) derived from adult bone marrow and have significant potential for many cell‐based tissue‐engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N‐isopropylacrylamide (NIPAM)‐based thermoresponsive polyelectrolyte multilayer (N‐PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N‐PEMU films were made via layer‐by‐layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU‐F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer‐by‐layer approach is an efficient way to form PNIPAM‐based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU‐forming ability and their multi‐lineage differentiation potential. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
Structural perturbations of positively charged sonicated liposomes (L) induced by incubation with human erythrocytes have been studied by thin-section electron microscopy. It has been found that just after mixing with cells L bind to cell surfaces and fuse with each other, first forming larger L and then flattened multilamellar structures. Successive fusion events occurring in the latter result in a reduced number of bilayers which gradually comes to a single one.  相似文献   

5.
Rat L6E9 muscle cells commit to terminal differentiation by forming a large muscle syncitia complete with the expression of a large number of muscle-specific contractile protein genes. To determine whether these cells, which fail to synthesize MLC (myosin light chain) 1 and cardiac alpha-actin, exhibit a deficiency in the expression of muscle determination genes, we measured expression of MyoD1, myogenin, Myf-5, and MRF-4. Results show these cells do not synthesize MyoD1, yet express the other myogenic determination genes. Transient expression of exogenous MyoD1 in these cells is sufficient to activate endogenous MLC 1 and cardiac alpha-actin mRNA synthesis during muscle differentiation. Previously undetected myosin heavy chain (MHC) isoforms (beta-MHC and perinatal MHC) are also transcribed at low levels in L6E9 muscle cells, and in MyoD1-transfected L6E9 cells no change occurs in their expression. Furthermore, treatment with the demethylating agent 5-azacytidine activates expression of the endogenous MyoD1 gene in L6E9 cells and, subsequently, rescues deficiencies in their myogenic biochemical program. These results demonstrate that the endogenous MyoD1 gene in L6E9 cells is not defective and can be functionally activated. Also, the MyoD1 protein plays an essential role, which cannot be compensated by other known muscle determination proteins, in the induction of MLC 1 and cardiac alpha-actin expression.  相似文献   

6.
During myogenesis, mononucleated myoblasts form multinucleated myotubes by membrane fusion. Efficiency of this intercellular process can be maximized by a simultaneous progress, with a time window, of other neighboring myoblasts in the differentiation program. This phenomenon has been described as the community effect. It proposes the existence of a molecule that acts as a differentiation-inducing signal to a group of identical cells. Here, we show that neuregulin is a strong candidate for this molecule in myoblast differentiation. The expression of neuregulin increased rapidly but transiently at early stage of differentiation of rat L6 cells. Neuregulin showed a potent differentiation-promoting activity in membrane fusion and expression of myosin heavy chain. The antibodies raised against neuregulin and its cognate receptor ErbB3, which were capable of neutralizing the signal pathway, inhibited myotube formation and expression of myosin heavy chain in both L6 cells and primary rat myoblasts. The progress of differentiation was mostly halted after the expression of myogenin and cell cycle arrest. These results suggest that the activation of an autocrine signaling of neuregulin may provide a basic mechanism for the community effect observed in the differentiation of the embryonic muscle cells.  相似文献   

7.
Nonmuscle myosin II (myosin hereafter) has well-established roles in generating contractile force on actin filaments during morphogenetic processes in all metazoans. Myosin activation is regulated by phosphorylation of the myosin regulatory light chain (MRLC, encoded by spaghettisquash or sqh in Drosophila) first on Ser21 and subsequently on Thr20. These phosphorylation events are positively controlled by a variety of kinases including myosin light chain kinase, Rho kinase, citron kinase, and AMP kinase and are negatively regulated by myosin phosphatase. The activation of myosin is thus highly regulated and likely developmentally controlled. In order to monitor the activity of myosin during development, we have generated antibodies against the monophosphorylated (Sqh1P) and diphosphorylated (Sqh2P) forms of Sqh. We first show that the antibodies are highly specific. We then used these antibodies to monitor myosin activation in wild type Drosophila tissues. Interestingly, Sqh1P and Sqh2P show distinct patterns of expression in embryos. Sqh1P is expressed nearly ubiquitously and outlines cells consistent with a junctional localization, whereas Sqh2P is strongly expressed on the apical surfaces and in filopodia of tissues undergoing extensive cell shape change or cell movements including the invaginating fore- and hindgut, the invaginating tracheal system, the dorsal pouch and the dorsal most row of epidermal (DME) cells during dorsal closure. In imaginal discs, Sqh1P predominantly localizes in the adherens junction, whereas Sqh2P locates to the apical domain. These antibodies thus have the potential to be very useful in monitoring myosin activation for functional studies of morphogenesis in Drosophila.  相似文献   

8.
We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.  相似文献   

9.
BACKGROUND: Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS: We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS: We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.  相似文献   

10.
The efficacy of electrical fields in soft-tissue repair is unclear. Materials with a charged surface provide a localized charged environment. We examined the effects of surface-charged particles in wound healing in rats with paired dorsal incisions with one side serving as a control. Tensiometry demonstrated that after 10 days, wounds with positively charged particles were 53 percent stronger (p less than 0.001) than controls (10 rats, 30 wound strips), whereas differences with negatively charged (6 rats, 15 strips) or uncharged beads (11 rats, 33 strips) were insignificant. Histologically, wounds with positively charged particles were characterized by large quantities of collagen-rich connective tissue and by prominent bead-associated giant cells. At 94 days, no differences in wound strength were noted. This method of creating charged local environments has potential clinical implications and may add insights into the behavior of cells in response to charged stimuli.  相似文献   

11.
Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates.  相似文献   

12.
Gerald S. Manning 《Biopolymers》2016,105(12):887-897
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar‐like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical‐chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress‐generating conformational changes in the myosin cross bridge, and relief of built‐up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin–myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin–myosin engagement during the weak‐to‐strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin–myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre‐power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.  相似文献   

13.
Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes.  相似文献   

14.
Bacteriophage-resistant mutant strains of the root-colonizing Pseudomonas strains WCS358 and WCS374 lack the O-antigenic side chain of the lipopolysaccharide, as was shown by the loss of the typical lipopolysaccharide ladder pattern after analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These strains differed from their parent strains in cell surface hydrophobicity and in cell surface charge. The observed variation in these physicochemical characteristics could be explained by the differences in sugar composition. The mutant strains had no altered properties of adherence to sterile potato roots compared with their parental strains, nor were differences observed in the firm adhesion to hydrophilic, lipophilic, negatively charged, or positively charged artificial surfaces. These results show that neither physicochemical cell surface properties nor the presence of the O-antigenic side chain plays a major role in the firm adhesion of these bacterial cells to solid surfaces, including potato roots.  相似文献   

15.
Marine substrata possess cues that influence the behavior of fouling organisms. Initial adhesion of fouling algal zoospores to surfaces is also theorized to depend primarily upon interactions between substrata and spore cell bodies and flagellar membranes. In an effort to identify cues and surface characteristics that influence spore settlement and early development, the effects of bioactive echinoderm extracts, surface charge, and surface hydrophobicity were examined individually and in tandem on zoospore settlement and germination in Hincksia irregularis. Experiments utilizing 96-well plastic culture plates confirmed that spore settlement and germination were significantly affected by surface charge and hydrophobicity as well as by echinoderm metabolites, both individually and in tandem. Spore settlement rates in the dark over 30 min were > 400% higher on hydrophobic surfaces than on positively and negatively charged surfaces. Spore germling numbers were > 300% higher on hydrophobic surfaces than on positively and negatively charged surfaces when spores were allowed to settle in the light for 30 min and the settled spores allowed to subsequently germinate for 24 h. Spore germling numbers were consistently > 25% higher on hydrophobic surfaces than on positively and negatively charged surfaces when equal numbers of spores were allowed to completely settle in the light and subsequently germinate for 24 h. H. irregularis germ tube lengths were also significantly longer on positively charged plates than on negatively charged plates. All echinoderm extracts tested had significant effects on germination and settlement at levels below those of estimated ecological concentrations. Short-term (30 min) exposure and subsequent germination experiments indicated that higher concentrations of extracts had rapid toxic effects on algal spores. Synchronous effects of echinoderm extracts and plate charge upon spore settlement varied considerably and did not show a strong dose response relationship. Long-term (24 h) exposure of spores to echinoderm extracts had dosage dependent effects on germination and spore survival. The results of this study indicate that H. irregularis spores possess the capacity for complex responses to their environment, utilizing combined cues of surface charge, surface energy and biochemistry to determine where to settle and germinate. These responses may aid spores in the detection of suitable substrata and conditions for settlement in the marine environment.  相似文献   

16.
Processivity of chimeric class V myosins   总被引:1,自引:0,他引:1  
Unconventional myosin V takes many 36-nm steps along an actin filament before it dissociates, thus ensuring its ability to move cargo intracellularly over long distances. In the present study we assessed the structural features that affect processive run length by analyzing the properties of chimeras of mouse myosin V and a non-processive class V myosin from yeast (Myo4p) (Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., and Mooseker, M. S. (2001) J. Cell Biol. 153, 1121-1126). Surprisingly a chimera containing the yeast motor domain on the neck and rod of mouse myosin V (Y-MD) showed longer run lengths than mouse wild type at low salt. Run lengths of mouse myosin V showed little salt dependence, whereas those of Y-MD decreased steeply with ionic strength, similar to a chimera containing yeast loop 2 in the mouse myosin V backbone. Loop 2 binds to acidic patches on actin in the weak binding states of the cycle (Volkmann, N., Liu, H., Hazelwood, L., Krementsova, E. B., Lowey, S., Trybus, K. M., and Hanein, D. (2005) Mol. Cell 19, 595-605). Constructs containing yeast loop 2, which has no net charge compared with +6 for wild type, showed a higher K(m) for actin in steady-state ATPase assays. The results imply that a positively charged loop 2 and a high affinity for actin are important to maintain processivity near physiologic ionic strength.  相似文献   

17.
In biological systems, charged membrane surfaces are surrounded by charged molecules such as electrolyte ions and proteins. Our recent experiments in the systems of giant phospholipid vesicles indicated that some of the blood plasma proteins (macro-ions) may promote adhesion between equally charged membrane surfaces. In this work, theory was put forward to describe an IgG antibody-mediated attractive interaction between negatively charged membrane surfaces which was observed in experiments on giant phospholipid vesicles with cardiolipin-containing membranes. The attractive interactions between negatively charged membrane surfaces in the presence of negatively and positively charged spherical macro-ions are explained using functional density theory and Monte Carlo simulations. Both, the rigorous solution of the variational problem within the functional density theory and the Monte Carlo simulations show that spatial and orientational ordering of macro-ions may give rise to an attractive interaction between negatively charged membrane surfaces. It is also shown that the distinctive spatial distribution of the charge within the macro-ions (proteins) is essential in this process.  相似文献   

18.
The reaction of water-soluble cytochrome c (c(2)) with its physiological redox partners is facilitated by electrostatic attractions between the two protein surfaces. Using spin-labeled cytochrome c(2) from Rhodobacter capsulatus and pulse electron paramagnetic resonance (EPR) measurements we compared spatial orientation of cytochrome c(2) upon its binding to surfaces of opposite charge. We observed that cytochrome c(2) can use its negatively charged "back" side when exposed to interact with positively charged surfaces (DEAE resin) which is the opposite to the use of its positively charged "front" side in physiological interaction with negatively charged binding domain of cytochrome bc(1). The later orientation is also adopted upon non-physiological binding of cytochrome c(2) to negatively charged carboxymethyl cellulose resin. These results directly demonstrate how the electric dipolar nature of cytochrome c(2) influences its orientation in interactions with charged surfaces, which may facilitate collisions with other redox proteins in a proper orientation to support physiologically-competent electron transfer. Saturation recovery EPR provides an attractive tool for monitoring spatial orientation of proteins in their interaction with surfaces in liquid phase. It is particularly valuable for metalloproteins engaged in redox reactions as a means to monitor the geometry and dynamics of formation of protein complexes in measurements that are independent of electron transfer processes.  相似文献   

19.
The ability of cells to form tissues represents one of the most fundamental issues in biology. However, it is unclear what triggers cells to adhere to one another in tissues and to migrate once a piece of tissue is planted on culture surfaces. Using substrates of identical chemical composition but different flexibility, we show that this process is controlled by substrate rigidity: on stiff substrates, cells migrate away from one another and spread on surfaces, whereas on soft substrates they merge to form tissue-like structures. Similar behavior was observed not only with fibroblastic and epithelial cell lines but also explants from neonatal rat hearts. Cell compaction on soft substrates involves a combination of weakened adhesions to the substrate and myosin II-dependent contractile forces that drive cells toward one another. Our results suggest that tissue formation and maintenance is regulated by differential mechanical signals between cell-cell and cell-substrate interactions, which in turn elicit differential contractile forces and adhesions to determine the preferred direction of cell migration and association.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号